Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение многокомпонентных реагирующих

Кинетический метод позволяет принципиально рассчитать любой возможный случай движения многокомпонентной реагирующей смеси газов при высоких температурах. Основные трудности, возникающие при проведении практических расчетов, обусловливаются отсутствием или неполным знанием различных молекулярных параметров,— таких, например, как потенциалы взаимодействия (электронов с атомами, электронов с молекулами и т. д.), которые необходимы при расчете коэффициентов переноса,— а в случае учета излучения отсутствием спектральных данных.  [c.527]


Ясно, что при изучении движения многокомпонентных реагирующих смесей необходимо объединять законы механики с законами физики и химии для величин и. и1 4.  [c.129]

Параллельно с этим упрощенным подходом разработана усложненная математическая модель геофизической турбулентности, для которой, наряду с базисными гидродинамическими уравнениями для среднего движения, выведены эволюционные уравнения переноса для одноточечных вторых моментов пульсирующих в потоке термогидродинамических параметров многокомпонентной реагирующей газовой смеси. Модель включает в себя эволюционные уравнения переноса для составляющих тензора турбулентных напряжений Рейнольдса, составляющих векторов турбулентного потока тепла и турбулентной диффузии, уравнения переноса для турбулентной энергии и дисперсии пульсаций энтальпии среды, а также уравнения переноса для парных корреляций пульсаций энтальпии и состава смеси и смешанных парных корреляций пульсирующих концентраций отдельных компонентов смеси. Такой подход обеспечивает возможность расчета сложных течений многокомпонентных реагирующих газов с переменной плотностью, когда существенны диффузионный перенос турбулентности, конвективные члены и предыстория потока, и потому более простые модели (основанные на идее изотропных коэффициентов турбулентного обмена) оказываются неадекватными.  [c.313]

Особое внимание исследователей привлекают в последнее время проблемы, возникающие при движении в пограничном слое многокомпонентных реагирующих смесей газов при больших сверхзвуковых скоростях, когда в результате сильного разогрева имеют место возбуждение внутренних степеней свободы молекул газа, его диссоциация, ионизация и излучение.  [c.526]

При движении многокомпонентной химически реагирующей смеси газов уравнение энергии выражает условие баланса подвода тепла, с одной стороны, а с другой — изменение полной энергии и совершенной работы. Для реагирующей смеси появляется источник теплообразования за счет химических реакций и вследствие диффузии газов. Первый закон термодинамики в применении к произвольному объему многокомпонентной газовой смеси утверждает, что изменение суммы кинетической и внутренней энергии равно работе, совершаемой над объемом V за единицу времени поверхностными напряжениями плюс скорость подвода тепла вследствие теплопроводности плюс выделение энергии за счет химических реакций плюс работа, совершаемая в единицу времени над веществом, образующимся внутри объема.  [c.92]


Из общих уравнений, описывающих движение и процессы переноса в многокомпонентной смеси реагирующих газов, при обычных предположениях получаются уравнения пограничного слоя.  [c.526]

Учебник содержит систематическое изложение основ современной газовой динамики. Физическое моделирование исходит из рассмотрения достаточно общей модели — многокомпонентной смеси химически реагирующих идеальных газов. Модели, используемые в различных приложениях газовой динамики, получаются как частные случаи. Движение газа моделируется на основе уравнений баланса, а состояние — на основе принципа локального термодинамического равновесия для конечного числа подсистем, составляющих газовую среду. Рассматриваются одномерные стационарные и нестационарные течения, двумерные стационарные течения и задачи внешней аэродинамики, включая аэродинамические задачи космических спускаемых аппаратов. Практически во всех разделах анализируются проблемы релаксационной газовой динамики и демонстрируются физические эффекты, полученные в этом анализе.  [c.6]

Выпишем систему уравнений движения вязкого многокомпонентного, химически реагирующего газа при наличии реакций диссоциации и ионизации, отсутствии внешних электромагнитных полей и излучения, условии квазинейтральности потока газа.  [c.87]

Использование полученной таким образом системы уравнений осредненного турбулентного движения многокомпонентной реагирующей смеси газов не представляется возможным без некоторых упрощений, обоснованность которых далеко не является очевидной. Более того, основываясь на том, что наши знания о природе и характере турбулентности не позволяют оценить в настоящее время вклад в процессы турбулентного переноса членов уравнений, содержащих пульсации плотности, этими членами в уравнениях пренебрегают. Таким образом, даже сам по себе вопрос об установлении основной системы уравнений динамики и термодинамики турбулентного движения многокомпонентной смеси газов (а следовательно, в частном случае соответствующих уравнений для турбулентного пограничного слоя) до сих пор продолжает быть предметом исследований. А. Фавр (С. г. A ad, sei., 1958, 246 18-20, 2576—2579, 2723-2725, 2839—2842, 246 23, 3216—3219 J. mee., 1965, 4 3-4,361— 421) цровел анализ возможных форм уравнений турбулентного движения однородного газа, задаваясь различными определениями осредненных кинематических, динамических и. термодинамических характеристик и соответствующих им пульсационных величин.  [c.539]

Содержание книги можно условно разделить на две части, в первой из которых (главы 1-5) подробно излагаются методы математического описания турбулентных течений многокомпонентных реагирующих газовых смесей, а во второй (главы 6-8) представлены конкретные примеры численного моделирования аэрономических задач. Первая глава, имеющая вводный характер, содержит некоторые общие положения теории турбулентности и обсуждение вопросов специфики природных сред, в которых многокомпонентная турбулентность играет важную роль. Во второй главе рассмотрена феноменологическая теория тепло- и массопереноса в ламинарной многокомпонентной среде и методами термодинамики необратимых процессов, с учетом принципа взаимности Онзагера, выведены определяющие соотношения для термодинамических потоков диффузии и тепла в многокомпонентной смеси газов. Третья глава посвящена построению модели турбулентности многокомпонентного химически активного газового континуума. С использованием средневзвешенного осреднения Фавра получены дифференциальные уравнения баланса вещества, количества движения и энергии (опорный басис модели) для описания среднего движения турбулентной многокомпонентной смеси реагирующих газов, а также дан вывод реологических соотношений для турбулентных потоков диффузии, тепла и тензора рейнольдсовых напряжений. В четвертой главе развита усложненная модель турбулентности многокомпонентного континуума с переменной плотностью, опирающаяся (в ка-  [c.7]


Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]

Мы начнем с вывода осредненных дифференциальных уравнений баланса вещества, количества движения и энергии (опорный базис модели), предназначенных для описания развитых турбулентных течений многокомпонентной смеси химически активных газов, и проанализируем физический смысл отдельных членов этих уравнений ( ЗЛ). Особое внимание будет уделено выводу (традиционным способом, основанном на понятии пути смешения) замыкающих реологических соотношений для турбулентных потоков диффузии, тепла и тензора турбулентных напряжений Рейнольдса ( 3.3). Прогресс в развитии и применении полуэмпирических моделей турбулентности первого порядка замыкания (так называемых градиентных моделей) для однородной сжимаемой жидкости (см., например, Таунсенд, 1959 Бруяцкий, 1986 Ван Мигем, 1977)) позволил получить обобщения некоторых из подобных моделей на важный для целей геофизики и аэрономии случай свободных стратифицированных течений многокомпонентной реагирующей смеси с поперечным сдвигом скорости Маров, Колесниченко, 1987).  [c.114]

Получена система замкнутых соотношений (дифференциальных уравнений среднего движения, уравнений химической кинетики и состояния в условиях турбулентного перемешивания, а также определяющих соотношений для разнообразных турбулентных потоков вещества, количества движения и энергии), учитывающая многокомпонентность и сжимаемость газовой смеси, диффузионный тепло- и массоперенос, химические реакции и воздействие поля гравитации. Эта система пригодна для описания широкого класса движений и физико-химических процессов в многокомпонентных реагирующих средах.  [c.166]

В последние годы, начиная с работы X. А. Рахматулипа (1956), намечается все более глубокое внедрение в теорию движения жидкостей и газов в пористой среде общих методов механч ки сплошных гетерогенных сред. Особое практическое значение это направление имеет при анализе перекрестных эффектов в процессах переноса при фильтрации многокомпонентных (в том числе реагирующих) смесей, распространении ударных волн, при детонации и горении в пористых средах, в задачах термодиф- фузии и т. п. ).  [c.587]


Смотреть страницы где упоминается термин Движение многокомпонентных реагирующих : [c.69]    [c.133]    [c.149]    [c.5]   
Механика сплошной среды Т.1 (1970) -- [ c.0 ]



ПОИСК



Многокомпонентность



© 2025 Mash-xxl.info Реклама на сайте