Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полет к Юпитеру

ПЛОСКОСТИ ЭКЛИПТИКИ после облета Юпитера большое количество численной информации имеется в работе [15], где представлены окна запуска для периода 1967—1978 гг. и соответствующие траекторные параметры. Как было показано в работе [14], траекторию минимальной энергии полета к Юпитеру можно отклонить от плоскости эклиптики  [c.21]

Характеристики коррекции траекторий полета к Марсу и Венере рассматривались также в работе А. К. Платонова (1966). Характери- стики коррекции траекторий полета к Юпитеру рассматриваются в работе Р. К. Казаковой, В. Г. Киселева и А. К. Платонова (1967).  [c.314]


Полеты к Юпитеру и Сатурну через планеты  [c.405]

Космический аппарат направляется на эллиптическую орбиту с афелием, расположенным где-то за Марсом, в поясе астероидов (рис. 152). В афелии он получает такой тормозной импульс от бортового двигателя, чтобы встретить Землю в точке Л или и разгоняется Землей, облетая ее с дневной стороны в точке А или с ночной в точке В (как можно ближе к поверхности). Таким образом может быть достигнут Сатурн, несмотря на то, что суммарная характеристическая скорость будет меньше начальной скорости, нужной для прямого полета к Юпитеру, и даже Уран [4.701. Правда, полет от Земли до Земли продолжается 2—3 года [4.68, 4.691, но, в отличие от предыдущего случая, он может начаться, как и прямой полет, один раз в год.  [c.406]

По мнению некоторых специалистов, электрические корабли при полетах к Юпитеру окажутся более выгодными и по полезной нагрузке, и по продолжительности полета, чем ядерные ракеты. Ядерные двигатели, возможно, будут использоваться на вторых или третьих ступенях ракет-носителей для вывода на околоземную орбиту кораблей, снабженных электрическими двигателями [4.1251.  [c.464]

После космических полетов к Юпитеру  [c.36]

Интересны, в частности, результаты теоретических расчетов, выполненных сотрудниками Вычислительного центра Академии Наук СССР и доложенные ими на Всесоюзном съезде по теоретической и прикладной механике в 1964 году. По этим расчетам солнечно-парусные космические корабли, двигаясь по разработанным авторами оптимальным траекториям, могли бы достичь Марса за 122 суток, Венеры—за 164 суток, Меркурия—за 200 суток. Полет к Юпитеру должен длиться 6,6 года, к Урану—49 лет. Близкие данные получены позднее и американскими учеными в частности, полет к Марсу космического зонда весом 91 килограмм с помощью паруса площадью 46 м должен потребовать, по этим данным, 135 суток.  [c.694]

Основные параметры активного участка и оскулирующей параболы представлены в табл. 6.11. На рисунке показаны гелиоцентрические траектории движения на активном участке, причем выключение тяги производится в момент достижения параболической скорости. Такой режим полета выбран для того, чтобы можно было сравнить его с полетом к Юпитеру по параболической орбите при использовании высокой тяги, рассматривавшимся в разделе 6.6.7. Можно рассматривать также и гиперболическую оскулирующую орбиту в качестве конечного участка траектории  [c.236]

Интерес к анализу сублимационного режима разрушения графита связан прежде всего с гиперболическими скоростями входа в атмосферу Земли космических аппаратов или с полетами к другим планетам Солнечной системы. Например, в зависимости от состава атмосферы Юпитера и условий входа зонда в нее тепловые потоки к поверхности зонда достигают от 5 до 100 кВт/см . Это приводит к таким большим толщинам унесенного слоя, что его масса доходит до 40% массы зонда [Л. 7-14]. В этих условиях графит является, по-видимому, единственным из теплозащитных материалов, способным выдержать столь значительные тепловые потоки при умеренных скоростях разрушения. Счи- 179 12  [c.179]


Облет планеты как способ увеличения гелиоцентрической скорости [60, 136]. Поля тяготения массивных планет Юпитера и Сатурна можно использовать для разгона аппарата при полете к удаленным планетам или для отбрасывания к центру Солнечной системы.  [c.160]

Наряду с практическими достижениями опубликован ряд теоретических работ и предложено немало тем для новых разработок, интересных именно с точки зрения механики космического полета. Достаточно, например, сказать, что солнечный парус стал рассматриваться как конкурент электро-ракетных двигательных установок. Конкретизируются проекты использования космических аппаратов в так называемых точках либрации, и уже началось их осуществление. Придумано, как использовать Землю для разгона на пути к Юпитеру и Сатурну...  [c.8]

В новом издании заново написаны главы 6, 7, 19, 21, посвященные использованию искусственных спутников Земли и орбитальных станций, полетам к планетам группы Юпитера и кометам. В других главах появились новые параграфы и внесены различные изменения В изложение. Практические нетронутыми остались часть третья, по-  [c.8]

Уже в начале космической эры было высказано мнение ), что время полета к Венере и Марсу для химических и ионных ракет примерно одинаково. Но Юпитер уже может быть достигнут через  [c.348]

Синодический период обраш.ения Юпитера равен 399 сут, т. е. благоприятный сезон наступает каждый год с опозданием немногим больше, чем на месяц, примерно так август — сентябрь 1977 г., сентябрь — октябрь 1978 г., октябрь — ноябрь 1979 г., ноябрь — декабрь 1980 г., декабрь 1981 г.— январь 1982 г., февраль 1983 г., март 1984 г., апрель 1985 г., май 1986 г., июнь 1987, июль — август 1988 г., сентябрь 1989 г., октябрь 1990 г. Наиболее благоприятны те сезоны, которые приходятся на начало января и начало июня, когда Земля находится вблизи линии узлов орбиты Юпитера. При этом январские сезоны особенно удачны, так как в январе Земля находится вблизи своего перигелия, где ее скорость на 1 км/с больше, чем в афелии, проходимом в июне. (Это обстоятельство сказывается сильнее, чем при полетах к Марсу, так как теперь траектория перелета гораздо длиннее.) Старты в январские сезоны сопровождаются наименьшей начальной скоростью из всех возможных (по разным сезонам) начальных скоростей, угловой дальностью, близкой к 180°, наименьшим наклонением траектории перелета, продолжительностью полета порядка 1000 сут.  [c.404]

Траектории полетов к Сатурну, или Урану, или Нептуну через Юпитер наименее чувствительны к начальным ошибкам в сезон 1979 г.  [c.408]

С помощью Юпитера можно достичь близких окрестностей Солнца при малых энергетических затратах и за приемлемое время — в отличие от прямого полета к Солнцу и перехода через бесконечность ( 5 гл. 15). При этом за один полет объектами исследования становятся два самых крупных тела Солнечной системы.  [c.410]

Рис 156 Полет к Солнцу через Юпитер [4 771  [c.411]

Как видим, даже при столь эффективной двигательной установке, как ядерная газофазная, свобода передвижения по Солнечной системе вовсе не является полной сохраняются длительные сроки, если в экспедицию уходят компактные корабли. Сокращение сроков возможно за счет увеличения скоростей, и даже газофазные ЯРД не избавят нас в этом случае от монтажа на орбите. Роль Юпитера в качестве естественного ускорителя при полетах к дальним планетам сохранится, но благоприятное для операции расположение планет не будет частым.  [c.453]

Активный маневр вблизи Солнца при полете к Солнцу через Юпитер. Этот вариант никаких особых выгод не дает, так как космический аппарат приходит в окрестность Солнца почти с той же скоростью, что и при сходе с орбиты Земли.  [c.468]

Заметим, что использование далеких планет для получения наибольшего приращения скорости КА в процессе гравитационного маневра достаточно проблематично из-за большого времени полета до этих планет. Отсюда наиболее реальным представляется использование ближайших к земле планет, т. е. Венеры и Марса, а также Юпитера. В последнем случае можно существенно уменьшить запас топлива КА для полетов к Сатурну, Урану, Нептуну, Плутону, Солнцу и вне плоскости эклиптики.  [c.312]

Тяга в пустоте ЖРД RL-10A3-3 составляет 67 кН при давлении в камере сгорания рк = 3,2 МПа и соотношении компонентов х = 5. Удельный импульс двигателя в пустоте /удоо=444с, длина двигателя 1,78 м, диаметр 1 м. Усовершенствованный вариант этого ЖРД, RL-10A3-3A, разрабатывался для автоматических межпланетных станций, выводимых в космос с использованием разгонной ступени Центавр . В первом полете он должен вывести АМС Галилей на траекторию полета к Юпитеру. Удлинение сопла до степени расширения 61 1 позволило поднять тягу до 73 кН при удельном импульсе 446,4 с. Разработчик (фирма Пратт-Уитни ) изучает возможность дальнейшего усовершенствования этого ЖРД путем увеличения степени расширения сопла до 205 и использования топливных пар фтор — водород и жидкий кислород — пропан.  [c.245]


Запуск АМС Галилей на траекторию полета к Юпитеру намечено осуществить с помощью разгонного блока Центавр . Управление положением аппарата, коррекции траектории и маневры при выходе на орбиту вокруг Юпитера должна обеспечивать специальная двигательная установка RPM. Она состоит из одного двигателя тягой 400 Н и двух связок по шесть верньерных двигателей тягой 10 Н, работающих на ММГ и АТ. Двигатель тягой 400 Н предназначен для отвода АМС от разгонного блока, выведения на орбиту вокруг Юпитера и маневрирования на ней. На рис. 177 приведено распределение масс конструкции АМС и расходов топлива на различные маневры. Масса конструкции двигательной установки RPM составляет 206 кг.  [c.270]

Траектории с попутным облетом Венеры — не единственная задача, которую решают специалисты по межпланетным полетам в настояш,ее время. Окончательно убедившись в возможностях современных и перспективных систем, они переключили свое внимание на исследование полетов к внешним планетам. В ходе подробного изучения характеристик систем для полетов к Юпитеру и отдельным астероидам [9] Дируэстер составил таблицы траекторий полета к Юпитеру и астероидам Церера и Веста, справедливые для интервала времени 1970—1980 гг. Графики изолиний для этих траекторий и соответствуюп ие численные данные войдут в следующий справочник по межпланетным полетам [10].  [c.17]

Использование гравитационного поля Юпитера для посылки зондов к Солнцу подробно обсуждалось в работе Портера, Луса и Эджкомба [14], чьи выводы в основном совпадают с результатами Ниехоффа, хотя их исследование коэффициентов чувствительности показало, что продолжительность перелетов может быть уменьшена до двух лет с небольшим ценой некоторых дополнительных затрат топлива по сравнению с затратами на траектории минимальной энергии полета к Юпитеру (рис. 5). Весьма подробное исследование траекторий солнечных зондов с облетом Юпитера провел Минович [15], который составил таблицы соответствующих траекторных параметров для периода 1967—  [c.20]

Современные зарубежные разработки космических аппаратов с электроракетными двигательными установками (ЭРДУ) предусматривают использование как солнечных ЭРДУ (СЭРДУ), снабженных большими панелями солнечных элементов, так и ядерных ЭРДУ (ЯЭРДУ), черпающ,их энергию от бортового ядерного генератора. При этом первые должны использоваться при полетах к Меркурию, Венере, Марсу, астероидам, в окрестность Солнца, а вторые — к планетам группы Юпитера и кометам (изредка встречаются проекты полетов к Юпитеру с СЭРДУ). Проектируются универсальные аппараты с ЭРДУ, которые можно использовать в самых различных операциях (в том числе на околоземных орбитах). В последнее время предусматривается, как правило, их первоначальный вывод на околоземную орбиту с помощью космического самолета.  [c.349]

Большие дальности перелетов к Юпитеру и следуюш,их за ним планет позволяют предполагать большую чувствительность траекторий к начальным ошибкам. Действительно, отклонение величины начальной скорости при полете к Юпитеру на 1 м/с вызывает отклонение в картинной плоскости для гомановской траектории на 340 ООО км, для других траекторий на величину порядка 120 ООО км. На среднем участке полета отклонение на 100 000 км, может быть компенсировано импульсом коррекции порядка 3 м/с. Для изменения длительности полета на 12 ч необходим импульс коррекции около 10 м/с [4.65].  [c.404]

Быстрые перелеты во внешние области солнечной системы. Из всех профилей, изображенных на рис. 6.50, последние два 14 и 15), представляющие собой траектории кеплерова движения, в основном предназначены для полетов во внешние районы солнечной системы. По всей вероятности, такие баллистические траектории больше подходят для полетов автоматизированных зондирующих ракет к Юпитеру и Сатурну (задачи 4-й группы), чем для полетов человека в необъятные глубины внешней части солнечной системы. Так как полет по траекториям профиля О требует колоссальных затрат времени, как это видно из рис. 6.43, в данном случае желательно, чтобы переходная гелиоцентрическая траектория была почти параболической или даже гиперболической. На рис. 6.58 представлена зависимость времени перелета от начальной гелиоцентрической скорости (взятой по отношению к величине круговой скорости на орбите Земли) при одностороннем полете к планетам юпитеровой группы. Кружки с точками в центре, находящиеся в левой части графика, соответствуют полетам к Юпитеру, Сатурну и Урану по минимальным траекториям. Наиболее характерной особенностью этих графиков является резкое уменьшение времени перелета при возрастании начальной скорости до параболической. Выход на параболическую траекторию требует добавления к круговой орбитальной скорости на орбите Земли, равной 97 700 фут/сек, еще около 40 ООО фут/сек, это значит, что скорость после выхода с заданной спутниковой орбиты высотой 300 морских миль должна быть равной примерно 53 100 фут/сек, т. е. требуемое приращение скорости должно составить 53 100—24 900 = 28 200 фут/сек. Из графика на рис. 6.42 видно, что для профиля О начальный прирост скорости при полете к Юпитеру равен примерно 21 500 фут/сек, при полете к Сатурну —27 ООО фут/сек и к Урану — 25 ООО фут/сек. Поэтому добавочная ступень, обеспечивающая прирост Лу = 6700 фут/сек, могла бы уменьшить время перелета к Юпитеру с 2,9 года до 2,1 года при приросте Аг = 3200 фут/сек — время перелета к Сатурну с 6 лет до 2,7 года при приросте  [c.227]

Корабль Пионер-10 был запущен в начале марта 1972 г. трехступенчатой ракетой Атлас-Центавр (ATLAS SLV-3 / EN-TAUR/TF-364-4) с целью получения научных данных об орбите Марса, в особенности по свойствам межпланетной среды и природе пояса астероидов, исследования Юпитера и его окружения и отработки техники продолжительных полетов к внешним планетам. Юпитер удален от Земли на 5,2 астрономических единиц космический корабль прибыл в район Юпитера в декабре 1973 г. Продолжительность полета Пионера-10 рассчитана на срок более двух лет [10].  [c.113]


Дается краткий обзор текущих и недавно опубликованных работ, посвященных методам синтеза траекторий для исследования межпланетных операций, связанных с полетами к планетам. Круг рассматриваемых вопросов включает в себя попутный облет Венеры, полеты к планетам за Юпитером, полеты зондов для изучения Солнца с использованием гравитационных полей Юпитера и Венеры, применение импульсных маневров при облете планеты или на гелиоцентрических этапах полета, недавно предложенный комбинированный режим исследования Марса с облетом и посадкой. Кроме того, обсуждаются некоторые специализированные программы для ЭВМ, обеспечивающие расчет характеристик траекторий облета планеты, автоматическое построение контуров тра-екторных параметров и полный анализ траекторий с учетом задач по лета и параметров различных систем.  [c.11]

Некоторые из последних работ Дируэстера 12] были также посвя-ш,ены исследованию полетов к планетам за Юпитером с использованием массы Юпитера. Он подтвердил вывод Фландро о том, что наиболее благоприятным временем для таких полетов является конец 70-х годов, и указал, что повторение такой возможности наступит не скоро из-за сравнительно больших взаимных синодических периодов внешних планет (рис. 4).  [c.19]

На границе сферы действия величина гелиоцентрической скорости выхода аппарата может существенно превысить значение Двигаясь по новой траектории, аппарат может достичь следующей планеты. Например, при полете американской станции Пионер-11 к Сатурну был использован гравитационный удар в поле тяготения Юпитера. Вояджер-2 разгоняли по очереди Юпитер, Сатурн и Уран. Полет к Урану по гомановской траектории продолжался бы 16 лет, а к Нептуну — 30 лет. Подходящая для такого разгона аппарата конфигурация внешних планет ожидается в 2155 г. цукнеп  [c.107]

Если перелет совершается по гомановской траектории, то за гелиоцентрическую скорость входа в сферу действия планеты мы можем принять гелиоцентрическую скорость подлета к орбите планеты-цели, совпадаюш,ую по направлению с орбитальной скоростью планеты. Скорость подлета меньше орбитальной скорости планеты при полете к внешним планетам (Марс, Юпитер и т. д.) и больше нее при полете к внутренним планетам (Венера и Меркурий). Поэтому вход в сферу действия совершается с фронтальной стороны для внешней планеты (планета догоняет космический аппарат) и с тыльной стороны для внутренней (аппарат догоняет планету). Соответственно планетоцентрическая скорость входа для внешних планет определяется по формуле  [c.321]

В главе 18 мы коснемся использования поля тяготения Венеры при полетах к Меркурию, а в главе 19 — к Юпитеру. Здесь же заметим, что поле тяготения Венеры может быть использовано для полета в окрестность Солнца. Траектория рассчитывается таким образом, чтобы после пролета Венеры ее перигелий приблизился к Солнцу. Можно так подобрать период обращения после прохождения Венеры, чтобы космический аппарат снова встретил Венеру и в результате перигелий еще больше приблизился к Солнцу. Было рассчитано, что с помощью ракетной системы, состоящей из ракет Сатурн-1 В , Центавр и ]1ершинг , таким путем может быть доставлена полезная нагрузка 272 кг на расстояние 0,1 а. е. от Солнца [4.47].  [c.389]

Гомановский перелет к Юпитеру, начинающийся при скорости 14 км/с, продолжается без трех месяцев 3 года, а параболический более года. Минимальная начальная скорость достижения Сатурна всего лишь на 1 км/с превышает соответствующую величину для Юпитера, но время перелета составляет уже 6 лет. По параболической же траектории Сатурн может быть достигнут за 2,5 года. Все это более или менее терпимо. Однако с остальными планетами группы Юпитера дело обстоит гораздо хуже. Полеты к Урану, Нептуну, Плутону требуют мало отличающихся минимальных скоростей, так как они уже близки к третьей космической. Но продолжительности полетов, как видно из табл. 6 и 7, колоссальны. Полет до Плутона (при его среднем расстоянии) по параболической траектории продолжается более 19 лет 21 января 1979 г. Плутон, двигаясь по своей достаточно вьггянутой орбите, оказался внутри почти круговой орбиты Нептуна и снова окажется дальше от Солнца, чем Нептун, только в марте 1999 г. <он достигнет перигелия в 1989 г), так что по-  [c.403]

Синодические периоды остальных планет группы Юпитера немного превышают год (см. табл. 3 в 1 гл. 13). Сезон, благоприятный для полета к Сатурну, наступает ежегодно с опозданием на две недели. Для Урана, Нептуна и Плутона опоздание наступает на срок от 5 до 1 сут. Космические аппараты к планетам юпитерианской группы можно запускать ежегодно, чтобы в течение долгих томительных лет ждать результатов эксперимента  [c.404]

Выше было показано, что даже в будущем, когда войдут в строй газофазные ЯРД, трудности пилотируемых полетов к планетам группы Юпитера будут велики. Неоднократно выражалась надежда, что с прогрессом космической техники окажется возможным заранее запланированное использование водорода, добываемого из льда на поверхностях некоторых спутников юпитерианских планет, в качестве рабочего тела ЯРДУ в последующих операциях  [c.458]

Ф Л a H Д p 0 (Flandro G. A.). Полеты с солнечно-электрическими двигателями малой тяги к Юпитеру с продолжением движения к внешним планетам.— Ракетная техника и космонавтика (русский перевод журнала AIAA Journal), 1968, т. 6, № 9.  [c.500]

Эти относительные скорости обычно принимают в качестве гиперболического избытка скорости и относят или к бесконечно удаленной точке, или к сфере действия. При втором допущении возникает небольшая методическая ошибка, поскольку не учитывается притяжение планеты на участке полета КА от границы ее сферы действия до бесконечно удаленной точки. Величина ошибки, равная разности скорости КА на границе сферы действия V ж скорости КА в бесконечно удаленной точке F o, зависит от поля притяжения планеты и величины гиперболического избытка скорости. Примеры расчета разности Уд — Voo для некоторых планет Солнечной системы показаны на рис. 7.25 [35]. Понятно, что с увеличением F разность Уц — Veo уменьшается вследствие более быстрого удаления (или приближения) КА от планеты. Цри полете КА от Земли к Марсу н Венере обычно F = 3 — 4 км/с, поэтому ошибка по скорости жожет достигать 130 м/с, а при полете от Земли к Юпитеру F , — 6 — 9 км/с, и ошибка по скорости не превышает 75 м/с.  [c.298]

Для полета к Солнцу целесообразно использовать гравитационное поле Юпитера. Так, прп оптимальном маневре максимальное возможное приращение скорости КА может достигать 42,7 км/с. При входе в сферу действия Юпитера по параболической траектории возможное приращение скорости КА за счет гравитационного маневра уменьшается до 30 км/с. Если же подлет КА к сфере действия Юпитера происходит по траектории типа Гоманна, возможное приращение скорости составляет 10 км/с. Между тем, если рассматривается задача пролета Солнца на расстоянии Гп = 0,2 а. е, а радиус афелия Га = 5,2 а. е. достигает орбиты Юпитера, то тормозной импульс скорости в афелии траектории равен 3,76 км/с (при этом время полета на гелиоцентрическом участке 4,7 лет). Следовательно, возможности коррекции скорости КА за счет гравитационного маневра в сфере действия Юпитера оказываются существенно больше, чем требуется для реализации такой траектории.  [c.330]


Смотреть страницы где упоминается термин Полет к Юпитеру : [c.18]    [c.165]    [c.228]    [c.236]    [c.18]    [c.32]    [c.407]    [c.423]    [c.499]    [c.499]   
Механика космического полета в элементарном изложении (1980) -- [ c.403 ]



ПОИСК



Полет в заплутонное через Юпитер

Юпитер



© 2025 Mash-xxl.info Реклама на сайте