Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектория к Сатурну

Траектории полетов к Сатурну, или Урану, или Нептуну через Юпитер наименее чувствительны к начальным ошибкам в сезон 1979 г.  [c.408]

В последние годы облет планеты применялся для такого изменения траектории аппарата, чтобы, двигаясь по новой траектории, аппарат мог достичь какой-либо другой планеты. Например, облет Маринером-10 Венеры позволил ему совершить три последующих облета Меркурия Пионер-11 после облета в декабре 1974 г. Юпитера перешел на траекторию движения к Сатурну. В этом разделе будет рассмотрено использование сближения с планетой для изменения гелиоцентрической скорости зонда.  [c.377]


Запуск автоматических искусственных комет по гелиоцентрическим эллиптическим, параболическим или гиперболическим траекториям к Юпитеру, Сатурну и далее, если это будет представлять интерес. Для увеличения грузоподъемности этих ракет их можно запускать с обитаемой космической станции, находящейся на околоземной орбите. Такого рода полеты технически близки к полетам пункта 2 и поэтому могут быть осуществлены в одно время с ними.  [c.209]

Двенадцатого ноября 1980 г. Вояджер-1 прошел на расстоянии 124 200 км от поверхности Сатурна. Открыты два спутника, не имеющие аналогов в Солнечной системе, — они находятся на почти одинаковых орбитах и раз в четыре года обмениваются траекториями. Сближение со спутником Сатурна Титаном — основной целью полета— сделало достижение Урана невозможным аппарат ушел в отдаленные районы Солнечной системы. Другой аппарат Вояджер-2 совершил 9 июля 1979 г пролет Юпитера, а 25 августа 1981 г. — пролет Сатурна. Изображения, переданные двумя аппаратами, обнаружили тонкую структуру колец Сатурна — каждое из них состоит из тысяч отдельных узких полосок (шириной в несколько километров), образованных частицами льда и пыли размерами до 10 см, в которые погружены глыбы размерами порядка 15 м. Система колец представляет чрезвычайно динамическое образование — удалось наблюдать распространяющиеся по спирали волны плотности. Самый главный сюрприз — совершенно невероятная структура кольца Р шириной 200 км с внешней границей, лежащей на расстоянии 2,3 К. На снимках можно различить локальные утолщения и отдельные нити , местами переплетенные, местами параллельные друг другу. Кольцо находится между орбитами двух маленьких спутников — гравитационных пастухов кольца.  [c.99]

Титан, находяш.ийся от Сатурна на среднем расстоянии 20,22 радиуса планеты (1 222 ООО км, период обращения 15,945 сут), может быть эффективно использован для пертурбационного маневра. Искусственный спутник Сатурна (ИСС) может быть направлен к Титану с помощью небольшого импульса в апоцентре большой эллиптической орбиты, чтобы затем с помощью активного маневра у Титана уменьшить период обращения и еще сильнее уменьшить его после нескольких облетов. Утверждается, что при очень точном соблюдении условий подлета к Титану, делается реальным перевод космического аппарата с пролетной траектории на орбиту ИСС без какой-либо затраты топлива (кроме как на предварительную коррекцию). Для этого должно быть обеспечено точное время подлета к Титану (можно ошибиться, но именно на 16 сут) [4.681.  [c.417]

Траектория на рис. 165 типична для облета Марса продолжительностью порядка 700 сут (менее 2 лет), соответствующего облетам, рассмотренным в 7 гл. 16 [4.8]. Возможно, однако, сокращение продолжительности экспедиции до 400—450 сут, если сообщить кораблю ракетный импульс вблизи Марса. Но при этом возрастают энергетические затраты на единицу полезной нагрузки и сильно увеличивается скорость входа в атмосферу Земли она равна 20,8 км/с в относительно неблагоприятный сезон 1980 г. и 17,4 км/с в 1986 г. Но ее можно уменьшить до 12,2 км/с в 1980 г., если затормозить корабль с помощью поля тяготения Венеры. Для этого корабль должен на пути к Земле пассивно пройти через сферу действия Венеры и выйти на орбиту с перигелием, лежащим внутри орбиты Венеры. Неудобство такого облета. в том, что в конструкции корабля приходится учитывать близость к Солнцу при возвращении. Начальный вес космического корабля, активно облетающего Марс, равен на орбите 463 т в неблагоприятных условиях 1980 г. и 290 т в благоприятных условиях 1986 г. Для монтажа нужны 2—3 модифицированные ракеты Сатурн-5 [4.102].  [c.447]


Из возможных методов осуществления полета Земля - Луна - Земля по минимуму стоимости и высокой вероятности выполнения программы в кратчайшие сроки был выбран вариант с выходом на орбиту Луны и возвращением сначала на орбиту Луны, а затем прямой посадкой на Землю. По схеме полета КК "Аполлон", состоящий из основного корабля с экипажем из трех человек, отсека оборудования и лунного экспедиционного корабля, выводится тяжелой PH "Сатурн-5" на траекторию полета к Луне. Близ Луны КК переводится на селеноцентрическую орбиту. Двое из трех астронавтов переходят из отсека экипажа основного корабля в  [c.58]

Как было показано ранее, полеты во внешнюю область солнечной системы по траекториям минимального расхода топлива характеризуются крайне продолжительными временами перелета, особенно при полетах за орбиту Юпитера. Здесь даже такие малые начальные ускорения, как Ио-< 10" , могут помочь в убыстрении этих перелетов. На рис. 6.63 даны два примера траекторий перелетов с малой тягой к Юпитеру и Сатурну.  [c.235]

Параметры траекторий полета с малой тягой к Юпитеру и Сатурну п соответствующих параболических участков (приближенные данные)  [c.237]

Результаiь исследования чувствительности требуемой начальной скорости показали, что наилучшей датой запуска космического аппарата к Сатурну с попутным облетом Юпитера является 1979 г. и что запуски к Урану и Нептуну с облетом Юпитера также лучше всего осуш,еств-лять в 1979 г. Многие из этих траекторий после пролета планеты назначения иногда выходят за пределы солнечной системы. Оптимальная возможность запуска аппарата к Плутону с облетом Юпитера наступает несколько раньше — в  [c.19]

На границе сферы действия величина гелиоцентрической скорости выхода аппарата может существенно превысить значение Двигаясь по новой траектории, аппарат может достичь следующей планеты. Например, при полете американской станции Нионер-11 к Сатурну был использован гравитационный удар в поле тяготения Юпитера. Вояджер-2 разгоняли по очереди Юпитер, Сатурн и Уран. Нолет  [c.161]

На границе сферы действия величина гелиоцентрической скорости выхода аппарата может существенно превысить значение Двигаясь по новой траектории, аппарат может достичь следующей планеты. Например, при полете американской станции Пионер-11 к Сатурну был использован гравитационный удар в поле тяготения Юпитера. Вояджер-2 разгоняли по очереди Юпитер, Сатурн и Уран. Полет к Урану по гомановской траектории продолжался бы 16 лет, а к Нептуну — 30 лет. Подходящая для такого разгона аппарата конфигурация внешних планет ожидается в 2155 г. цукнеп  [c.107]

Для запуска спутников Сатурна и следуюш,их за ним планет особенно важно, чтобы траектории перелета с Земли были близки к гомановским. В частности, траектории типа Гранд тур нежелательны, так как приводят к большим планетоцентрическим скоростям входа в сферу действия. До 1990 г. наилучшие условия для старта к Сатурну при прямом перелете — в январе 1985 г. (прибытие к Сатурну в сентябре 1990 г.).  [c.416]

Быстрые перелеты во внешние области солнечной системы. Из всех профилей, изображенных на рис. 6.50, последние два 14 и 15), представляющие собой траектории кеплерова движения, в основном предназначены для полетов во внешние районы солнечной системы. По всей вероятности, такие баллистические траектории больше подходят для полетов автоматизированных зондирующих ракет к Юпитеру и Сатурну (задачи 4-й группы), чем для полетов человека в необъятные глубины внешней части солнечной системы. Так как полет по траекториям профиля О требует колоссальных затрат времени, как это видно из рис. 6.43, в данном случае желательно, чтобы переходная гелиоцентрическая траектория была почти параболической или даже гиперболической. На рис. 6.58 представлена зависимость времени перелета от начальной гелиоцентрической скорости (взятой по отношению к величине круговой скорости на орбите Земли) при одностороннем полете к планетам юпитеровой группы. Кружки с точками в центре, находящиеся в левой части графика, соответствуют полетам к Юпитеру, Сатурну и Урану по минимальным траекториям. Наиболее характерной особенностью этих графиков является резкое уменьшение времени перелета при возрастании начальной скорости до параболической. Выход на параболическую траекторию требует добавления к круговой орбитальной скорости на орбите Земли, равной 97 700 фут/сек, еще около 40 ООО фут/сек, это значит, что скорость после выхода с заданной спутниковой орбиты высотой 300 морских миль должна быть равной примерно 53 100 фут/сек, т. е. требуемое приращение скорости должно составить 53 100—24 900 = 28 200 фут/сек. Из графика на рис. 6.42 видно, что для профиля О начальный прирост скорости при полете к Юпитеру равен примерно 21 500 фут/сек, при полете к Сатурну —27 ООО фут/сек и к Урану — 25 ООО фут/сек. Поэтому добавочная ступень, обеспечивающая прирост Лу = 6700 фут/сек, могла бы уменьшить время перелета к Юпитеру с 2,9 года до 2,1 года при приросте Аг = 3200 фут/сек — время перелета к Сатурну с 6 лет до 2,7 года при приросте  [c.227]


При полете по гиперболической относительно Солнца траектории высокая скорость движения препятствует осуществлению возврата, хотя время перелета даже при полете по слабогиперболической траектории значительно сокращается, особенно в полетах к Сатурну и более дальним  [c.228]

Положение, однако, совершенно меняется, если Ло = 6 10 g. Использование столь малых ускорений нецелесообразно ввиду того, что они требуют применения дополнительных двигательных систем для сокращ ения времени ухода корабля от Земли и, кроме того, длительность полета по гелиоцентрической переходной траектории с этим ускорением оказывается большей, чем время полета, например, к Сатурну по баллистической траектории минимального расхода топлива. Такие системы малой тяги в лучшем  [c.237]

В главе 18 мы коснемся использования поля тяготения Венеры при полетах к Меркурию, а в главе 19 — к Юпитеру. Здесь же заметим, что поле тяготения Венеры может быть использовано для полета в окрестность Солнца. Траектория рассчитывается таким образом, чтобы после пролета Венеры ее перигелий приблизился к Солнцу. Можно так подобрать период обращения после прохождения Венеры, чтобы космический аппарат снова встретил Венеру и в результате перигелий еще больше приблизился к Солнцу. Было рассчитано, что с помощью ракетной системы, состоящей из ракет Сатурн-1 В , Центавр и ]1ершинг , таким путем может быть доставлена полезная нагрузка 272 кг на расстояние 0,1 а. е. от Солнца [4.47].  [c.389]

Гомановский перелет к Юпитеру, начинающийся при скорости 14 км/с, продолжается без трех месяцев 3 года, а параболический более года. Минимальная начальная скорость достижения Сатурна всего лишь на 1 км/с превышает соответствующую величину для Юпитера, но время перелета составляет уже 6 лет. По параболической же траектории Сатурн может быть достигнут за 2,5 года. Все это более или менее терпимо. Однако с остальными планетами группы Юпитера дело обстоит гораздо хуже. Полеты к Урану, Нептуну, Плутону требуют мало отличающихся минимальных скоростей, так как они уже близки к третьей космической. Но продолжительности полетов, как видно из табл. 6 и 7, колоссальны. Полет до Плутона (при его среднем расстоянии) по параболической траектории продолжается более 19 лет 21 января 1979 г. Плутон, двигаясь по своей достаточно вьггянутой орбите, оказался внутри почти круговой орбиты Нептуна и снова окажется дальше от Солнца, чем Нептун, только в марте 1999 г. <он достигнет перигелия в 1989 г), так что по-  [c.403]

При использовании ДУ, состоящей из нескольких ЖРД, можно достичь высокой степени надежности, даже в случае аварийного выключения двигателей одного из них по команде бортовых ЭВМ. Например, при имевших место случаях преждевременно выключения одного из пяти ЖРД второй ступени PH Сатурн-5 и одного из трех ЖРД SSME орбитальной ступени МТКК Спейс шаттл оставшиеся работоспособными двигатели путем увеличения времени работы компенсировали уменьшение общей тяги ДУ и обеспечивали полет по расчетной траектории или по траектории близкой к ней.  [c.353]


Смотреть страницы где упоминается термин Траектория к Сатурну : [c.18]    [c.397]    [c.405]    [c.451]    [c.416]    [c.82]   
Космическая техника (1964) -- [ c.227 , c.228 ]



ПОИСК



Сатурн

Траектория

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте