Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы в автомобилестроении

Применение абразивных материалов в автомобилестроении. Абразивные материалы применяют для изготовления различных шлифовальных инструментов в виде кругов различной формы, головок, брусков и сегментов. Наибольшее применение имеют шлифовальные круги. Они состоят из зерен абразивных материалов, скрепленных между собой связующим веществом, называемым связкой. При изготовлении шлифовальных кругов применяют керамическую, бакелитовую и вулканитовую связки.  [c.94]


Автомобильная промышленность проводит большие работы по усовершенствованию конструкции, улучшению технологии производства, применению новых материалов в автомобилестроении. Все это будет содействовать повышению надежности и долговечности автомобилей.  [c.3]

Фрикционные композиционные материалы представляют собой сложные композиции на медной или железной основе. Коэффициент трения можно повысить добавкой асбеста, карбидов тугоплавких металлов и различных оксидов. Для уменьшения износа в композиции вводят графит или свинец. Фрикционные материалы обычно применяют в виде биметаллических элементов, состоящих из фрикционного слоя, спеченного под давлением с основой (лентой или диском). Коэффициент трения по чугуну для фрикционных материалов на железной основе 0,4—0,6, Они способны выдерживать температуру в зоне трения до 500—600 °С, Применяют фрикционные материалы в тормозных узлах и узлах сцепления (в самолетостроении, автомобилестроении и т, д.).  [c.420]

Детали из неметаллических материалов с металлическими покрытиями широко внедряются в автомобилестроение, радиотехническую промышленность и другие отрасли, поэтому вопрос о способах химического осаждения металлов в сочетании с гальваническим является очень современным  [c.34]

Эти тормоза находят в настояш,ее время преимущественное распространение в автомобилестроении, но по своим характеристикам, габаритам и удобству компоновки могут применяться в различных областях машиностроения. Дисковые тормоза, в которых фрикционная накладка выполнена в виде сплошного кольца или кольца, набранного из отдельных секторов, имеют коэффициент перекрытия (т. е. отношение поверхности трения, перекрытой фрикционным материалом, ко всей поверхности трения металлического диска), близкий к единице. Это обстоятельство создает ухудшенные условия теплоотвода с поверхности трения, так как тепло, образующееся при трении, отводится от металлического диска главным образом через цилиндрическую поверхность диска, имеющую относительно малые размеры.  [c.261]

Если в авиации предпочтение отдается малому весу агрегатов и их надежности, то в автомобилестроении не меньшую роль играют себестоимость агрегатов, расход горюче-смазочных материалов, простота обслуживания, долговечность. В результате,  [c.193]

Большое значение в автомобилестроении, авиастроении и других отраслях имеют фрикционные металлокерамические материалы на медной и железной основах.  [c.417]

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.  [c.427]


Ожидается, что при расширении области применения углепластиков их стоимость снизится до 5000 иен/кг. Разработка сравнительно дешевых методов массового производства в ближайшем будущем приведет к тому, что различные композиционные материалы, и в первую очередь углепластики, получат широкое применение в автомобилестроении.  [c.233]

На долю серого чугуна с пластинчатым графитом приходится около 80% общего производства чугунных отливок. Серые чугуны обладают высокими литейными качествами (жидкотекучесть, малая усадка, незначительный пригар металла к форме и др.), хорошо обрабатываются и сопротивляются износу, однако из-за низких прочности и пластических свойств в основном используются для изготовления неответственных деталей. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, колонки, каретки и др.) в автомобилестроении из ферритно-перлитных чугунов делают картеры, крышки, тормозные барабаны и др., а из перлитных чугунов — блоки цилиндров, гильзы, маховики и др. В строительстве серый чугун применяют в основном для изготовления деталей, работающих при сжатии (башмаков, колонн), а также санитарно-технических деталей (отопительных радиаторов, труб). Значительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена. Из серого чугуна, содержащего фосфор (0,5%), изготавливают архитектурно-художественные изделия.  [c.190]

Композиционные материалы с металлической матрицей как конструкционные материалы используются практически во всех отраслях народного хозяйства в авиации — для изготовления высоконагруженных деталей (обшивки лонжеронов, панелей и др.) и двигателей (лопаток компрессоров и турбин и др.) самолетов в автомобилестроении — для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т.д., в горной промышленности (буровой инструмент, детали комбайнов и др.), в промышленном и гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и др.) и т.д.  [c.233]

Однако радикального снижения материалоемкости можно добиться за счет использования достижений научно-технического прогресса, т.е. при внедрении принципиально новых технических решений. Приведем несколько примеров, в которых новый принцип работы дал значительный эффект экономии материалов. Планетарная передача вместо цилиндрической зубчатой передачи экономит до 80 % материала. Сушилка с кипящим слоем экономит до 80 % материала. Дисковые тормоза вместо колодочных в автомобилестроении экономят до 50 % материала.  [c.404]

В производстве легковых и грузовых автомобилей, включая фургоны, городские автобусы и междугородные автобусы-экспрессы, а также при изготовлении железнодорожных вагонов используется огромное количество разнообразных материалов. Разработка составов материалов и процессов изготовления деталей из них должна обеспечить низкую себестоимость, малую энергоемкость, высокие эксплуатационные качества и красивый внешний вид изделий. Появление новых технологий и их быстрая смена из соображений наличия источников энергии, защиты прав потребителя, ответственности изготовителя за качество выпускаемой продукции, гарантийных обязательств и охраны окружающей среды потребовали пересмотра традиционной методики отбора материалов. Перед применением в промышленности, выпускающей наземные транспортные средства, любой потенциальный материал или технологический процесс должен быть оценен в свете указанных требований, а в автомобилестроении, кроме того, — и с учетом общего экономического состояния отрасли  [c.485]

Нет оснований считать, что наше обш,ество станет менее мобильным в обозримом будущем. До тех пор, пока эта мобильность будет суш,ествовать, средства транспорта будут изнашиваться, устаревать или требовать замены по другим причинам. Несмотря на скорость и экономичность передвижения по воздуху, удобство персональных средств транспорта, особенно для путешествий на расстояния до 240 км, будут занимать суш,ественное место в семейном бюджете. Быстрая эволюция разработок средств наземного транспорта создает постоянно растущие возможности для использования новых и улучшенных материалов, процессов и химических продуктов. Наибольшая масса (высокие прочность и коррозионная стойкость, а также многосторонность возможностей использования композитов в разработках, составах и изделиях дают возможность с учетом специфических потребностей сделать их привлекательными для применения в автомобилестроении. Разработка качественных продуктов, надежной оснастки и оборудования для проведения процесса, а также снабжение соответствующими сырьевыми материалами придает уверенность в возможности разработки качественных материалов с хорошими эксплуатационными свойствами, необходимыми для гарантии доверия при составлении программ выпуска, точного определения вида АП и производства композитов на основе АП.  [c.510]


Материалы с малой плотностью (легкие материалы) широко используются в авиации, ракетной и космической технике, а также в автомобилестроении, судостроении, строительстве и других отраслях промышленности. Применение легких материалов дает возможность снизить массу, увеличить грузоподъемность летательных аппаратов без снижения скорости и дальности полета, повысить скорость движения автомобилей, судов, железнодорожного транспорта.  [c.357]

Среди вяжущих материалов с термореактивными свойствами только для двух эпоксидных соединений не требуется тепловой обработки. Ударная прочность и гибкость этих соединений в зависимости от состава колеблется в широком диапазоне. Однако при применении для соединения деталей этих вяжущих материалов требуется предварительная подготовка поверхности. Следует также отметить, что к категории соединительно-наполнительных вяжущих материалов относятся композиционные полиуретановые материалы, придающие стыкуемым узлам очень высокую прочность, но обладающие повышенной токсичностью. К наиболее употребительным в автомобилестроении вяжущим материалам эластомерной группы относится полисульфидный каучук, который используется для крепления ветрового стекла. Вначале стекла оборачивают по контуру тканью, а затем в пазы рамы, с которой будет соединяться стекло, нагнетают полисульфидный каучук. После вставки стекла в раму и 30 мин холодного отверждения соединение становится прочным и герметичным.  [c.150]

Области применения. Ультразвуковая сварка прежде всего найдет применение для соединения тонких деталей из однородных и разнородных материалов в приборостроении и радиоэлектронной промышленности, при сварке металлов, образующих хрупкие интерметаллические соединения, для приварки тонких обшивок к несущей конструкции (в авиационной промышленности, автомобилестроении и ряде других отраслей промышленности).  [c.29]

Композиционные волокнистые материалы находят широкое применение в таких областях промышленности, как космическая техника, авиа-, судо-, автомобилестроение и т. д. Применение композиционных материалов в современных конструкциях дает существенный выигрыш в массе, прочности, долговечности, стойкости к коррозии и агрессивным химическим средам. Эти материалы служат и прекрасным заменителем металлов. Так, из общего объема полимерных материалов, потребляемых в США для замены металлов, 40—50 % идет на изготовление деталей автомобилей, приборов, счетных машин и других изделий общего машиностроения 30—35 % — на изготовление труб, фитингов и профилей 10—15 % — корпусов судов, деталей самолетов и ракет [43].  [c.5]

Справочник включает два раздела В первом разделе содержатся данные о химическом составе, механических, физических и технологических свойствах и области применения в автомобилестроении и авторемонтном производстве сталей, чугунов, цветных металлов и сплавов, а также ремонтных материалов.  [c.2]

Однако пайка является перспективным способом восстановления деталей, значение которого будет возрастать по мере расширения применения в автомобилестроении специальных сплавов и композиционных материалов.  [c.119]

В автомобилестроении широко распространены неметаллические материалы. К таким материалам относятся пластмассы, синтетические кожи, дерево, стекло, резина и др. В последнее время значительно возросло применение различных пластмасс. Большинство деталей из этих материалов дешево в изготовлении и при ремонте автомобилей восстановлению не подлежит, а заменяется новыми.  [c.246]

Немаловажное значение при очистке от загрязнений имеет учет изменения физико-химических свойств материалов, применяемых в автомобилестроении, под воздей-  [c.5]

Наиболее очевидным направлением расширения применения продуктов химической промышленности в автомобилестроении кажется увеличение объема использования пластмасс. Надежды здесь связываются, прежде всего, с созданием нового поколения материалов, так называемых конструкционных пластмасс. Если раньше пластмассы довольно эффективно использовались там, где требовались высокие показатели диэлектрических свойств, хороший внешний вид,— и это практически все, то за последнее время на авансцену вышли высокие прочностные свойства новых материалов, благодаря чему стало возможным изготавливать из них изделия, работающие под механической нагрузкой, и технологичность, что позволило резко упростить и удешевить изготовление весьма массивных изделий сложной конфигурации.  [c.5]

Вообще в последнее время целый ряд нетрадиционных применений продуктов химической промышленности в автомобилестроении переходит из разряда единичных, используемых в очень дорогих автомобилях или машинах специального назначения (в том числе, гоночных), в область массового автомобилестроения. Так обстоит дело, например, с резким повышением насыщенности автомобиля электронными (контрольными, регулирующими, управляющими) устройствами. Это повлекло за собой расширение использования особо чистых материалов, применяемых для изготовления полупроводников и датчиков самых различных типов, а также микропроцессоров. Сюда же относится расширение применения жидких кристаллов, в частности для замены многочисленных стрелочных приборов на дисплеи и цифровые индикаторы. Внедрение простейших компьютеров на автомобиле — дело ближайшего будущего.  [c.7]

Ультразвуковая сварка относится к наиболее перспективным способам соединения пластмасс в автомобилестроении. Под влиянием ультразвуковых колебаний более 20 кГц в свариваемых деталях возникают механические высокочастотные колебания, которые преобразуются в тепловую энергию, идущую на создание шва между свариваемыми поверхностями. Толщина материалов, свариваемых ультразвуком,— от 0,1 до 10 мм. Можно применять этот метод и при сварке эластичных полимеров небольшой толщины 0,05—1,5 мм.  [c.163]

Несмотря на все доводы в пользу применения композиционных материалов в автомобилестроении, последнее слово остается за инженерами, отношение которых к материалам формируется в процессе накопления практического опыта. Производство деталей автомобильными компаниями, будь они из традиционных материалов или из упрочненных пластиков, осуществляется в условиях жестокой конкуренции. В таких условиях возможны случаи, когда рекомендации для проектирования и производства деталей могут оказаться недостаточно надежными, поэтому отсутствие богатого опыта, подобного накопленному при конструировании тысяч кузовов из стального листа, производство которых за более чем щестидесятилетний период составило десятки миллионов штук, требует осторожного подхода к проблеме новых материалов. Тем не менее имеющийся на сегодняшний день некоторый опыт использования композиционных материалов в автомобилестроении позволяет надеяться и на дальнейшие успехи.  [c.19]


Ашкиназий Я.М. Бесцентровые круглошлифовальные станки с ведущим кругом и числовым программным управлением // Материалы 3" Международной автомобильной конференции "Прогрессивные технологические процессы и новые материалы в автомобилестроении". М. ОАО "Автосельхозмаш-холдинг" ОАО "НИИТавтопром", 2002. С. 41-49.  [c.340]

Нитроцементация — насыщение углеродом в газовой среде. При этом по сравнению с цементацией сокращаются длительность и стоимость процесса, упрочняется тонкий поверхностный слой — 0,3.. . 0,8 мм до HR 60.. . 63, коробление уменьшается, что позволяет избавиться от последующего шлифования. Нитроцементация удобна в массовом производстве и получила широкое применение в редукторах общего назначения, в автомобилестроении и других отраслях — материалы 25ХГМ, 25ХГТ и др.  [c.144]

Автомобильные тележки ( багги ) служат характерным примером того, как применение композиционных материалов способствует развитию новых идей в автомобилестроении при минимальных капиталовложениях. Этот вид продукции также предоставляет благоприятную возможность предпринимателю развивать перспективное направление в автомобилестроении.  [c.28]

Зарубежные авторы связывают перспективность расширения применения композиционных материалов в машиностроении, судостроении, автомобилестроении и в самолетостроении со снижением стоимости армирующих волокон, указывая, например, что в течение ближайших десяти лет стоимость углеродных волокон, полученных из пека, составит 10—20 доллар/кг. При такой стоимости углеалюминий может быть с успехом применен в различных отраслях народного хозяйства. Из углеалюмииия в принципе  [c.237]

Металлокерамические материалы обоих типов могут изготовляться прессованием в прессформах и прокаткой. Ввиду недостаточной механической прочности получаемой массы металлокерамику после спекания приходится усиливать напрессовкой или приваркой к стальной подкладке. Прочность соединения металлокерамики со стальной подкладкой в значительной степени зависит от состояния поверхности подкладки. Малейшее наличие окислов сильно снижает прочность соединения. Толщина слоя металлокерамики принимается равной в авиации 0,25—2 мм, в автомобилестроении 2—10 мм. Небольшая толщина слоя металлокерамики позволяет значительно уменьшить габариты тормозного устройства. Так, в дисковых тормозах применение металлокерамики позволяет на 30—40% уменьшить габариты тормоза в осевом направлении. Обычно принимают опорный стальной диск толщиной  [c.541]

Металлокерамические фрикциоииые материалы на медной и железной основах весьма эффективны в автомобилестроении, авиастроении и других отраслях промышленности.  [c.436]

Композиционные материалы на основе углеродных волокон применяются в автомобилестроении несколько в меньшем масштабе, чем в аэрокосмической промышленности. Это связано с высокой стоимостью этих материалов, а также с отставанием в разработке методов массового производства композиционных материалов. Например, стоимость 1 кг конструкции современных автомобилей из традиционных материалов составляет приблизительно 1000 иен. В то же время стоимость углеш1ас-тиков — от десяти тысяч до нескольких десятков тысяч иен за 1 кг, т. е. в 10 или в несколько десятков раз выше. При использовании углепластиков в аэрокосмической промышленности высокая цена материала не столь существенна из-за высокой стоимости всего изделия, поэтому можно использовать довольно трудоемкий метод автоклавного формования, а в автомобилестроении возможность применения углепластиков лимитируется стоимостью материала и сложностью существующих методов формования.  [c.229]

За последние годы в связи с появлением тяже-лонагруженных двигателей в автомобилестроении, тракторостроении, транспортном машиностроении и других появилась острая необходимость в материалах подшипников, обладающих повышенной задиростойкостью. В связи с этим в РФ, Японии, Англии и Америке разрабатываются алюминиевооловянные сплавы, содержащие до 30 и даже 40 % Sn и отрабатывается технология изготовления сплавов, содержащих свинец. Такие сплавы обладают способностью хорошо сопротивляться задиру при ультратонких смазочных слоях, однако эта особенность достигается наиболее полно при содержании 14 % РЬ. В России разработан метод получения алюминиевосвинцовых (до 30 % РЬ) сплавов из гранул. Отливка гра-  [c.767]

В последние годы в автомобилестроении применяют чугунные детали, изготавливаемые из порошков и отлич1ющиеся весьма хорошей износостойкостью благодаря способности впитывать смазку в имеющиеся поры. Металлокерамические чугунные детали (в первую очередь поршневые кольца, направляющие втулки клапанов) изготовляют из порошкообразных шихтовых материалов спеканием под давлением примерно 6,5 Т см ) в водородной среде (температура около 1100 С время — около 2 ч) Для изготовления металлокерамических деталей используют, в частности, железный порошок, полученный методом восстановления прокат-ной окалины (ГОСТ 9849—61), графитовый порошок (марки ТКБ по ГОСТ 4404—58), хромовый порошок (ВТУ 1—54), медный электролитический порошок (марки ПМ-1 по ЦМТУ 4451—54). На некоторых авторемонтных предприятиях из металлокерамических материалов изготовляют втулки распределительного вала двигателей ЯАЗ-204, ЯАЗ-206. Химический состав чугунов и металлокерамических материалов, применяемых для изготовления автомобильных деталей, в частности гильз цилиндров, поршневых колец, коленчатых и распределительных валов, толкателей, втулок и гнезд клапанов, приведен в табл. 11, 12, 13,  [c.15]

Лакокрасочные материалы на основе битумов и асфальтов (табл. 160) готовят как без добавки, так и с добавлением растительных масел. В первом случае битумноасфальтовые композиции образуют обратимые пленки, способные растворяться в нефтепродуктах и расплавляться при нагревании, Во втором случае масляная основа при рысыхании образует необратимую пленку, стойкую против воздействия атмосферы, влаги, кислот и хорошо защищающую металл от кор розий. Вторая группа битумных материалов используется в автомобилестроении  [c.204]

Система развития работ по государственной и отраслевой стандартизации в автомобилестроении является комплексной. Она распространяется на технологию, параметры, технические требования и методы испытаний автомобильного подвижного состава, а также его узлов и агрегатов. В систему включен специальный раздел, в котором указаны исходные материалы и комплектующие изделия внеотргелевого производства, в том числе изделия черной и цветной металлургии, химической, нефтехимической, легкой и других смежных отраслей промышленности.  [c.25]

Алюминий и алюминиевые сплавы являются важным конструкционным материалом в самолетостроении. Они широко применяются в судостроении, транспортном машиностроении, автомобилестроении, а также для изготовления электрического провода. Все большее применение алюминий и его сплавы находяг при изготовлении предметов домашнего обихода.  [c.217]

Первыми клеями, которые нащли широкое применение в автомобиле, были клеи и герметики на основе натурального каучука и битума для приклейки отделочных материалов и шумоизоляции. В середине 60-х годов началось применение модифицированных фенольных клеев для сборки тормозных накладок с колодками. С постановкой на производство первых моделей автомобилей ВАЗ применение клеев и герметиков в автомобилестроении резко увеличилось. Специально для автомобильной промышленности было разработано более 15 марок клеев и около 10 марок герметиков. В настоящее время марочный ассортимент клеев и герметиков еще более расширился. Из последних новинб к следует отметить акрилатный клей для приклеивания пластины зеркала заднего вида к лобовому стеклу и анаэробный герметик для герметизации и сто-порения резьбовых соединений.  [c.180]

Широкое применение в автомобилестроении получили объемные цельноформованные панели обивки потолка, задка и другие детали отделки. При их производстве клеи применяются для наклеивания отделки и других материалов. В основном используются термочувствительные клеи. В конструкции цельноформованной обивки потолка автомобиля ВАЗ-2105, например, для крепления облицовочной пленки к каркасу из жесткого формуемого пенополиуретана использован полиуретановый клей на водной основе. Склеивание производится запрессовкой в штампе.  [c.197]



Смотреть страницы где упоминается термин Материалы в автомобилестроении : [c.638]    [c.6]    [c.211]    [c.18]    [c.156]    [c.255]    [c.6]    [c.398]    [c.780]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.267 , c.274 ]



ПОИСК



Автомобилестроение

Применение композиционных материалов автомобилестроении



© 2025 Mash-xxl.info Реклама на сайте