Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система алюминий — углерод

К настоящему времени изучено влияние многих элементов на плотность р и свободную поверхностную энергию а жидкого железа. В предлагаемом обзоре для удобства систематизации влияние элементов на р и а железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные нами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом.  [c.28]

Системы с образованием а-фазы по перитектоидной реакции (рис. IV. 21, г). Диаграммы состояния такого типа наблюдаются в системах титана с углеродом, алюминием, кислородом и азотом.  [c.399]


Система алюминий — углерод почти не изучена. Имеющиеся работы позволяют достоверно определить лишь существование  [c.488]

Система алюминий — углерод 345  [c.1198]

Системах кремний—кислород—углерод и кремний—кислород— алюминий—углерод, а также в системе кремний—кислород—кальций—углерод.  [c.4]

Моноокись углерода и алюминий при высоких температурах образуют одну газовую фазу. Чистый алюминий и углерод незначительно растворяются друг в друге. Установлено, что в жидком алюминии растворимость углерода составляет менее 0,05 вес. % при 1300—1500° С [227], а при 1000—1100 С практически равна нулю [228]. Расплавленный алюминий растворяется в карбиде, но только при высоких температурах. При сплавлении карбида с алюминием при температурах выше 2000° С в системе образуются два несмешивающихся слоя, которые при охлаждении отделяются друг от друга.  [c.106]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Принятая государственными стандартами СССР система обозначения марок стали даёт возможность легко установить химический состав данной марки стали. В этой системе двузначные числа с левой стороны букв в обозначениях марки стали показывают среднее содержание углерода в сотых долях процента, а буквы справа от этих чисел обозначают Г—марганец, С— кремний. X—хром, Н—никель, В — вольфрам, Ф—ванадий, М —молибден, Ю—алюминий цифры после букв обозначают процентное содержание соответствующего элемента в целых единицах. Обозначения марок высококачественной стали, более чистой по сравнению с качественной в отношении серы и фосфора и с повышенными механическими свойствами, дополняются буквой А в конце обозначения.  [c.359]


Рис. 3.7. Политермические разрезы системы железо — марганец — алюминий — углерод Рис. 3.7. Политермические разрезы <a href="/info/336071">системы железо</a> — марганец — алюминий — углерод
Химические свойства. В Периодической системе Д.И. Менделеева порядковый номер алюминия 13, и, по последним данным [5], его атомная масса составляет 26,9815 (по углероду и 26,98974 (по кислороду 0). Ниже приведены основные свойства алюминия, а более подробные сведения освещены в специальной литературе, и в частности в [5].  [c.14]

Структура серого (литейного) чугуна состоит из металлической основы с вкрапленным в нее графитом пластинчатой формы. Такая структура образуется непосредственно при кристаллизации чугуна в отливке в соответствии с диаграммой состояния системы Fe — С (стабильной). Причем чем больше углерода и кремния в сплаве и чем ниже скорость его охлаждения, тем выше вероятность кристаллизации по этой диаграмме с образованием графитной эвтектики. При низком содержании углерода и кремния чугун модифицируют небольшими дозами некоторых элементов (например, алюминия, кальция, церия).  [c.189]

При увеличении кон центрации цинка в латуни и олова в бронзе коэффициент диффузии возрастает при постоянном значении Q. В твердых растворах кремния, алюминия, олова, цинка, кадмия и бериллия в меди коэффициент диффузии возрастает почти на порядок при приближении к пределу растворимости. Аналогично изменяется D в системах Аи — Pd и Pd — Ni. В аустените коэффициент диффузии марганца, никеля и углерода зависит от концентрации диффундирующего элемента.  [c.111]

Положение легирующих элементов в периодической системе элементов Менделеева, строение и размеры их атомов. К числу легирующих элементов в стали относятся элементы второго периода — висмут и азот, третьего — алюминий и кремний, четвертого — титан, ванадий, марганец, кобальт, никель и медь, пятого — цирконий, ниобий и молибден, шестого — вольфрам и свинец. Кроме этих элементов, в стали присутствует еще элемент второго периода — углерод.  [c.303]

Одни из них (углерод, азот, никель, марганец, медь и в некоторых случаях кобальт) действуют в сторону образования аустенита, способствуя расширению аустенитной области, а другие (хром, вольфрам, тантал, молибден, титан, ниобий, кремний, ванадий, алюминий) — в сторону образования феррита, способствуя расширению ферритной области. Степень влияния того или иного элемента можно определить, исходя из сопоставления данных по сужению Y-области по сравнению с диаграммой системы Fe—С.  [c.239]

Алюминий (до 3%) в зависимости от содержания марганца и углерода по разному влияет на фазовый состав сплавов системы Fe—Мп <10% Мп, <0,001% С — алюминий не изменяет фазового состава >10% Мп <0,01% С — увеличивает количество у-фазы за счет е-фазы, одновременно повышая нестабильность аустенита к превращениям при деформации 10— 12% Мп 0,1—0,2% С — стабилизирует аустенит как при охлаждении, так и при деформации [77, 78].  [c.41]

Повышение содержания углерода до 1 % в сплавах системы Fe—Мп—С—А1—V—Мо при варьировании марганца (от 7 до 18%), алюминия (от О до 3%), молибдена (от О до 1%) и ванадия (от О до 1%) переводит эти сплавы в аустенитные двухфазная ( +v) структура наблюдается при содержании в этих сплавах 6% Мп и 1% V. Введение в сплавы Fe—Мп—С алюминия обеспечивает повышение их износостойкости.  [c.42]

Большое значение имеет также избирательное образование определенных фаз в насыщаемой поверхности. Хотя возможные фазы и хорошо известны, что в общем, как упоминалось, облегчает своеобразное прогнозирование состава насыщенных слоев и выбор насыщающего агента, однако образование именно требуемых фаз делает часто решение таких задач нелегким. Если в системах металлов и неметаллов с углеродом, а также с азотом образуется ограниченное число существенно отличных по свойствам и поэтому легче поддающихся избирательному образованию фаз, то в случае насыщения бором, кремнием, алюминием, бериллием следует считаться с возможностью образования при насыщении большого числа фаз, также с существенно отличными свойствами, но близкими между собой по составам и условиям образования. Поэтому для термодиффузионных покрытий в традиционной химико-термической обработке и используют в первую очередь нанесение карбидных и нитридных покрытий. Однако и в этом случае превращения в поверхностных слоях настолько сложны, а представления о природе сложных карбидов и нитридов столь ограниченны, что исследования в этой области привлекают внимание специалистов по химико-термической обработке. Следует также учесть, что многие карбиды и нитриды обладают широкими областями гомогенности, в пределах которых происходит технически вполне ощутимое изменение свойств.  [c.8]


Сталь легированная конструкционная (ГОСТ 4543—71). Поковки из конструкционной стали для ряда деталей современных машин должны обладать высокими механическими свойствами прочностью, вязкостью и сопротивлением усталости. Углеродистая качественная конструкционная сталь иногда не удовлетворяет этим требованиям, так как прочность и твердость растут с повышением содержания углерода в стали, но одновременно с этим уменьшается пластичность и вязкость, повышается хрупкость. Поэтому поковки для ответственных деталей изготовляют из легированных сталей, обладающих повышенными механическими свойствами. Марки низколегированных и легированных конструкционных сталей обозначаются по буквенно-цифровой системе. Для маркировки этих сталей принято легирующие элементы обозначать буквами X — хром, Н — никель, Г — марганец, С — кремний, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Т — титан, Ю — алюминий. Марганец и кремний являются легирующими, если содержание в стали первого более 1 % и второго — не менее 0,8%.  [c.136]

Для маркировки легированных сталей установлена буквенно-цифровая система. Легирующие элементы в марках стали обозначаются следующими буквами А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, Ю — алюминий, К — кобальт, X — хром, Ц — цирконий. Цифры перед буквенным обозначением марки стали указывают среднее содержание углерода в сотых или десятых долях процента. После цифр ставят буквы, обозначающие легирующие элементы, входящие в состав данной стали. Цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых единицах. Букву А (азот) ставить в конце обозначения марки не допускается.  [c.25]

По литературным данным рассмотрено влияние двадцати трех элементов на ллотность р жидкого железа и тридцати трех — на его свободную поверхностную энергию а. Для удобства систематизации влияние элементов на р и о железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные авторами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. Используя известные критерии поверхностной активности, авторы провели оценку надежности имеющихся литературных и собственных данных. Табл. 2, библиогр. 109.  [c.222]

Система алюминий — углеродное волокно. По данным [90] алюминий практически не растворим в углероде, а растворимость углерода в алюминии не превышает 0,05% по массе при 1300— 1500° С. Главной реакцией, определяющей взаимодействие углеродного волокна с алюминием, является реакция образования карбида AI4 3. Обычно алюминиевые композиции, армированные углеродными волокнами, получают методами пропитки расплавом [169, 211]. Углеродные волокна не смачиваются расплавами на основе алюминия до 1100° С. При этой температуре волокна растворяются в расплаве на 40—60% своего объема и полностью теряют прочность. Количество карбидной фазы в материале, полученном при температуре самопроизвольного смачивания, настолько велико, что при последующем хранении образцов в течение нескольких дней они самопроизвольно разрушаются в результате выделения ацетилена при реакции карбида с влагой. Если пропитываются волокна с никелевым или медным покрытием, то последнее интенсивно растворяется в расплаве, и волокна разунроч-няются после контакта с расплавом в течение 2—5 мин на 40— 50% исходной прочности. Подобное же явление отмечено в работе [128], авторы которой обеспечивали смачивание путем химической обработки поверхности углеродных волокон.  [c.85]

Высоколегированный чугун. (По ГОСТу 7769—63.) В системе сплавов Fe—А1—С в зависимости от содержания алюминия и углерода, помимо а- и -у-твердых растворов, выявляются следующие структурные составляющие графит, карбид алюминия AI4 3 и так называемая е-фаэа, подробно описанная в работе [45]. Это твердая и хрупкая магнитная фаза, имеющая кристаллическую решетку гранецентрированного куба с параметром 3, 74 кх, соответствующую решетке сплава ugAu. Эта фаза способна растворить до 4% С. Весьма обстоятельные исследования по изучению структуры Fe—А1—С сплавов в отожженном состоянии выполнены в ЧССР [46, 47 ]. Результаты этих исследований приведены в табл. 54 и на рис. 19.  [c.212]

Система алюминий — углерод почти не изучена. Имеющиеся работы позволяют достоверно определить лишь существование карбида алюминия АЦСз. Установлено [1], что при 1(Ю—1100° углерод в алюминии не растворяется. Алюминий и карбид алюминия при1 высоки температурах ( 20СЮ°) сплавляются.  [c.345]

Основным легирующим элементом в титановых сплавах является алюминий. За редким исключением, он присутствует во всех сплавах на основе титана. Поэтому значение системы Т1 —А1 для титановых сплавов можно сравнить со значением системы Ее —С для сталей. Следующими по важности и распространенности легирующими элементами являются ванадий и молибден, образующие с 0-фэзой титана непрерывный ряд твердых растворов. Применяют легирование промышленных сплавов Сг, Мп, Ее, Си, 8п, 2г, W. Для повышения стойкости титана в сильных коррозионных средах применяют "катодное" легирование в виде небольших добавок палладия и платины. Из неметаллов наиболее важное значение имеет ограниченное легирование кремнием, кислородом, углеродом, бором.  [c.11]

Одним из способов достижения высокой вязкости разрушения сплавов на основе железа, предназначенных для криогенной техники, является снижение концентрации охрунчивающих примесей (углерода, кислорода и азота) путем введения химически активных (поглощаюших) элементов, которые будут связывать указанные примеси. Были опробованы добавки одиннадцати активных металлов в системе Fe—I2Ni, включая А1, Hf, La, мишметалл, Nb, Si, Та, Ti, V, Y и Zr. Предварительные исследования [2] показали, что AI, Nb, Ti и V наиболее эффективно повышают вязкость разрушения. Для наиболее подробного исследования в качестве оптимального варианта химически активного элемента был выбран алюминий. Задачами исследования были оптимизация содержания никеля и алюминия, изучение влияния примесей, механизмов упрочнения и свариваемости.  [c.251]


В обозначении марок легированных сталей принята такая система, при которой двузначные числа с левой стороны обозначают среднее содержание углерода в сотых долях процента. Буквы справа от этих цифр обозначают X — хром, Н — никель. Si — кремний, М — молибден, Ф — ванадий, В — вольфрам, Ю — алюминий. Цифры после букв обозначают процентное содержание соответствующего элемента. Например, марка 12ХНЗА означает, что сталь содержит углерода 0,12 /о, хрома —около 1 /о, никеля — около 3 /о (буква без цифр обозначает присадку до Р/о). Буква А , стоящая в конце обозначения марки, указывает на принадлежность стали к высококачественным материалам,  [c.149]

Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]

Может показаться, что композиты - это неоправданно сложные стр кт ры. Однако элементы с задатками идеальных конструкционных материалов находятся, что называется, под рукой - в центральной части периодической системы. Эти элементы, среди которых углерод, алюминий, кремний, азот и кислород, образуют соединения с прочными стабильными связями. Такие соединения, типичными представителями которых являются керамические материалы, например, оксид алюминия (основа рубинов и сапфиров), карбид кремния и диоксид кремния (главный компонент стеюта), обладают высокой прочностью и жесткостью, а также теплостойкостью и устойчивостью к химическим воздействиям. Они имеют низк)то плотность, а составляющие их элементы широко распространены в природе. Один из элементов - углерод - имеет такие же хорошие свойства и в свободном состоянии - в форме углеродного волокна.  [c.55]

Ряд исследований последних лет посвящен получению многокомпонентных пленочных материалов на основе нитрида алюминия. Так, структура, механические и химические свойства тонких пленок В—А1—N переменного состава, приготовленных ионнолучевым осаждением, изучались в [44]. Отношение N/(A1—В) для всех пленок составляло 1,0. Предполагается, что в пленках реализуется состояние твердого раствора BN—A1N вюртцитной структуры. Получено, что микротвердость пленки от содержания бора практически не зависит, однако рост его концентрации определяет повышение химической интертности системы скорость травления сплава, содержащего 9 % BN, фосфорной кислотой на порядок меньше, чем для чистого АЖ. В [45] отмечается, что при осаждении на нитрид алюминия углеродных пленок термическая диффузия для данной системы выше, чем для АЖ-керамики, и увеличивается с ростом толщины пленки углерода.  [c.9]

В основу маркировки легированных сталей положена буквенно-цифровая система (ГОСТ 4543-71), Легирующие элементы обозначаются буквами русского алфавита марганец - Г, кремний - С, хром - X, никель - Н, вольфрам - В, ванадий - Ф, титан - Т, молибден - М, кобальт - К, алюминий - Ю, медь - Д, бор - Р, ниобий - Б, цирконий - Ц, азот - А. Количество углерода, как и при обозначениях углеродистых сталей, указывается в сотых долях процента цифрой, стоящей в начале обозначения количество легирующего элемента в процентах указывается цифрой, стоящей после соответствующего индекса. Отсутствие цифры после индекса элемента указывает на то, что его содержание менее 1,5 %. Высококачественные стали имеют в обозначении букву А, а особовы-сококачественые - букву Ш, проставляемую в конце. Например, сталь 12Х2Н4А содержит 0,12 % С, около 2 % Сг, около  [c.19]

Стали и сплавы с высоким электросопротивлением (ГОСТ 10994—74) доЛжны сочетать высокое сопротивление (1,06... 1,47 мкОм-м, что болф чем в 10 раз выше, чем у низкоуглеродистой стали) и жаростойкость (1000,..1350° ). К технологическим свойствам таких сплавов предъяв шотся требования высокой пластичности, обеспечивающей хорошую Деформируемость на прутки, полосу, проволоку и ленты, в том числе Жа лых сечений, а к потребительским — малой величины температурного коэффициента линейного расширения. Для этих Сплавов используются системы Fe + Сг + А1, Ре + Ni + Сг и Ni -ь Ст. Их микроструктура представляет собой твердые растворы с высоким содержанием легирующего элемента. Чем больше в сплавах хрома и алюминия, тем выше их жаростойкость. Количество углерода в сплавах строго ограничивают (0,06...0,12%), так как появление карбидов снижает пластичность и сокращает срок эксплуатации изделий.  [c.182]

В интенсивно перемешиваемой электромагнитными силами ванне металла при науглероживании заметный градиент концентраций компонентов существует только в областях, непосредственно примыкающих к поверхности раздела науглероживатель — металл. Сера является поверхностно-активным элементом и сильно снижает поверхностное натяжение жидкого железа. Поэтому повышение содержания серы в поверхностном слое расплава является самопроизвольно протекающим процессом, уменьшающим общий изобарный потенциал системы. Положительная адсорбция серы жидкой сталью зависит, таким образом, от состава расплава, свойств науглеро-живателя и присутствия в нем других поверхностно-активных компонентов. Углерод, кислород, кремний, алюминий — поверхностно-активные вещества. Они образуют в жидком железе соединения, более устойчивые, чем сульфиды железа. При этом переход серы в металл уменьшается. Совместное действие углерода, кислорода, кремния и алюминия может быть значительным. Теоретически при содержании 4% углерода в чугуне равновесное содержание серы должно быть всего лишь 0,0024% [92]. Расхождение результатов, полученных на практике, с расчетными в сторону увеличения содержания серы объясняется сложным взаимодействием элементов при многокомпонентности расплава.  [c.91]

Растворно-осадительный механизм роста, приводящий к необратимому увеличению объема вследствие развития диффузионной пористости, изучен применительно к графи-тизированным сплавам железа, никеля и кобальта. С углеродом указанные металлы образуют растворы внедрения и сильно различаются от него коэффициентами диффузии. Большое различие в диффузионной подвижности имеет место и в сплавах других металлов и неметаллов. Но при гермоциклировании этих сплавов, когда многократно повторяются процессы растворения и выделения избыточных фаз, накопление пор не обнаруживается. Число изученных систем невелико, но по крайней мере в микроструктуре термоциклиронанных твердых растворов на основе хрома и никеля, меди и титана, алюминия и меди, алюминия и кремния и некоторых других поры не выявлены. В указанных системах. компоненты образуют растворы замещения ч в них реализуется вакансионный механизм диффузии.  [c.98]

Бор довольно сильно окисляется в условиях дуговой сварки. Так, при сварке открытой дугой проволоками с малыми добавками бора он окисляется почти полностью. Обладая большим сродством к кислороду (см. рис. 15), бор может участвовать в развитии не только кремне- и марганцевовосстановительных процессов, но и восстанавливать титан из шлака, содержащего кислородные соединения титана. Разумеется, речь идет о довольно больших концентрациях бора в сварочной ванне, измеряемых десятыми долями процента. В иных условиях, при наличии в составе флюса довольно больших количеств окислов бора (например, 20%) возможно восстановление бора не только титаном и алюминием, но и хромом, углеродом, кремнием и марганцем. В табл. 19 приведены данные о переходе бора в металл шва из бористого фторидного флюса системы СаРа—В2О3 (АНФ-22). При отсутствии бора в сварочной проволоке и основном металле конечное содержание его в металле шва может достигнуть 0,2—0,3%, а при наличии в шве титана — даже 0,5—0,6%. Это обстоятельство несомненно расширяет возможности сварки под флюсом применительно к жаропрочным сталям и сплавам. Здесь имеется в виду не само по себе легирование металла шва бором через флюс, а возможность предотвращения угара бора при использовании проволоки или стали, легированной бором, в сочетании с бористым плавленым флюсом. 76  [c.76]


Ванадий принадлежит к числу наиболее энергичных фер-ритообразователей. Он весьма ощутительно повышает стойкость сварных швов аустенитных сталей против образования горячих трещин. Следует подчеркнуть, что положительное действие ванадия объясняется не только увеличением количества S-фазы и повышением ее качественных показателей, но и измельчением первичной структуры швов, а также заметным обессериванием сварочной ванны. В отличие от кремния, алюминия, титана, ниобия, способных вызывать горячие трещины в высоконикелевых швах, ванадий во всех случаях действует положительно, повышая стойкость швов против горячих трещин. Это объясняется отсутствием эвтектических соединений в системах Fe—V, Ni—V, r—V. При повышенном содержании углерода в шве в принципе возможно образование комплексных эвтектик ледебуритного типа. Однако нам не удалось установить отрицательного действия ванадия при высоком содержании углерода, чего, к сожалению, нельзя сказать о таких карбидообразователях, как титан, ниобий, вольфрам и, по-видимому, цирконий.  [c.206]

На примере расплава системы К, Na, А1/С1 (см. рис. 2, кривая 2) вйдно, что при введении указанных усовершенствований в методику эксперимента объемное содержание диоксида углерода в хлоре снизилось в среднем в 4—5 раз, т. е. до уровня 0,2—0,3% и представляет собой в основном фоновую концентрацию, которая почти не меняется в процессе поляризации. Так как качество трихлорида алюминия и материала аппаратуры в сравниваемых  [c.25]

Из раздела IV следует, что поиски приемлемой композиции на основе никеля, армированного сапфировыми волокнами, не были особенно плодотворными. Хотя авторы не могут согласиться с тем, что эта система бесперспективна, путь к реализации свойств, предсказываемых правилом смеси, изобилует трудностями. Многие из них, безусловно, являются общими для всех композиций с металлической матрицей, армированной хрупкими керамическими волокнами и тем не менее несколько представляющих практический интерес материалов этого класса уже изготовляются и имеют свойства, которые внушают оптимизм в отношении перспектив использования и других систем, включая систему Ni—AI2O3. Например, в настоящее время уже широко используются в аэрокосмических конструкциях боралюминиевые композиции, а композиции титан — бор и алюминий — углерод исследуются с точки зрения возможности применения в этих же областях.  [c.232]

В процессе электролиза алюминия в рабочее пространство корпусов выделяются различные газы фтористый водород, продукты испарения электролита, окись углерода, углекислый газ, серусодержаш.ие газы, летуч]1е составляющие коксования само-обжигающихся анодов. Кроме того, выделяются иыль и тепло. Для создания необходимых условий труда корпуса электролиза оборудованы системой газоулавливания н вентиляционной системой рабочего пространства.  [c.318]

Алюминиевые сплавы стойки по отношению к кислым водам (до pH 4,5) даже в присутствии большого количества хлоридов [38]. Сузмэн и Акерс [39] показали, что во многих районах, где воды имеют небольшую буферную емкость или емкость кислотной нейтрализации (например, в Нью-Йорке), значение pH может снижаться до 4,5—3,2. По этой причине агрессивному воздействию подвергаются и такие металлы, как железо и медь. Затем растворенные тяжелые металлы будут осаждаться на поверхности алюминия и вызывать тяжелую питтинговую коррозию. Нейтральные воды сами по себе являются малоагрессивными или даже совсем неагрессивными по отношению к алюминию [40]. Однако положение может измениться в присутствии тяжелых металлов и при повышении концентрации некоторых специфических компонентов воды. Появление накипи или осадков может способствовать об разованию концентрационных гальванических элементов и возни новению питтинговой коррозии. Соотношение оотенциалов алюминия и других металлов в растворе может оказаться таким, что будет активно стимулировать коррозию. Кислород, двуокись углерода и сероводород, которые являются агрессивными по отношению к стали, не оказывают вредного действия на системы башенного охлаждения из алюминия.  [c.92]

Для обозначения марок сталей принята буквенно-цифровая система. Элементы, входящие в состав металлов и сплавов, условно обозначают следуюши.ми буквами Ю — алюминий, Р — бор, Ф — ванадий, В — вольфрам, С — кремний, Г — марганец, Д — медь, М — молибден, Н — никель, Б — ниобий, Т — титан, У — углерод. П — фосфор, X — хром. Цифры показывают содержание углерода и легирующего компонента. Первые две цифры в начале обозначения показывают среднее содержание углерода в сотых долях процента. Цифры, стоящие после буквы, указывают примерное содержание легирующего компонента (в целых процентах), который данная буква характеризует. Если содержание компонента меньще или около 1%, то цифра отсутствует, если содержание компонента около 1,5%, то ставится цифра 1, около — 2% — цифра 2 и т. д.  [c.204]


Смотреть страницы где упоминается термин Система алюминий — углерод : [c.17]    [c.183]    [c.87]    [c.252]    [c.848]    [c.253]    [c.286]    [c.91]    [c.375]    [c.34]   
Металловедение и термическая обработка (1956) -- [ c.345 ]



ПОИСК



Алюминий углерод

Механизм разрушения пленки в системе алюминий—бор углеродом

Система алюминий — кислород углерод

Углерод

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте