Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полосы молекул типа симметричного волчка

Фиг. 110 и 111 показывают, что ( -ветви с ростом Ка сжимаются. При этом структура полос молекул типа асимметричного волчка, для которых важны большие значение К, приближается к структуре полос симметричного волчка. Чтобы получить полное представление о структуре полосы асимметричного волчка, все подполосы обеих схем следует, конечно, наложить  [c.264]

Если молекула является симметричным волчком (или близка к нему) в силу симметрии самой молекулы и принадлежит к точечным группам Со ,, Ос , V или какой-либо.аксиальной точечной группе с осью симметрии выше второго порядка, то при переходах между двумя полносимметричными уровнями разрешены только изменения АК=0 (см. выше). Поэтому мы имеем одну серию подполос, почти того же типа, как и для параллельных инфракрасных полос (фиг. 122). В данном случае имеются лишь два отличия 1) в каждой подполосе, кроме трех ветвей Р, Я -а R, содержатся ветви О и 5 с интервалом между линиями, вдвое большим, чем в ветвях Р и(ДУ= 2, см. стр. 33)  [c.470]


Разрешенный электронный переход между невырожденными состояниями в молекуле, которая по своей симметрии относится к типу симметричного волчка, обязательно должен быть параллельного типа, а это значит, что только компонента отлична от нуля. Следовательно, все разрешенные полосы в такой системе полос должны быть параллельного типа и подчиняться правилу отбора (11,65). Если вращательные постоянные А ж В -в верхнем и нижнем электронных состояниях различаются не очень сильно, то структура полос будет такой же, как структура параллельных инфракрасных полос, подробно рассмотренных в томе II ([23], стр. 446 и след.) полоса будет иметь Р-, Q- и Л-ветви со слабым оттенением. В такой полосе каждая линия состоит из нескольких компонент с различными значениями К К =  [c.225]

Полосы, аналогичные полосам П2О, были обнаружены при изучении спектров НзЗ и ВгЗ около 1390 и 1265 Л. Однако для НзЗ (и Ва8) вращательные постоянные А и В различаются не очень сильно, тогда как С ж - А. Отсюда следует, что эти полосы опять-таки являются полосами молекулы типа сплюснутого почти симметричного волчка.  [c.265]

При р = 1 (/д = /д) полоса типа В, разумеется, тождественна полосе типа А. В случаях, близких к этому предельному случаю, полоса типа В, наблюдаемая при средней дисперсии, все еще будет состоять из некоторого числа приблизительно равноудаленных линий. При промежуточных значениях р структура полосы очень сложна, но по мере приближения к противоположному предельному с тучаю (р мало) мы снова имеем приблизительно симметричный волчок 1с = 1а Ь 1в- Однако в данном случае направление изменения дипольного момента перпендикулярно оси почти симметричного волчка и потому полоса типа В в отличие от полосы типа А будет иметь структуру перпендикулярной полосы симметричного волчка. Все это ясно видно при сравнении спектра в верхней части фиг. 156 и спектра, приведенного на фиг. 128. В предельном случае р = О мы получаем перпендикулярную полосу линейной молекулы, т. е. остается только одна из подполос (с ветвями Р, Q и / ) в верхнем ряду фиг. 156.  [c.508]

Аналогичным методом можно получить, что в случае молекул с симметрией близких к симметричному волчку, чередование интенсивностей будет отсутствовать в серии ветвей Q полос типа В, если ось симметрии второго порядка совпадает с осью Ь, а ось а является осью волчка, а также если ось с совпадает с осью волчка (сплющенный симметричный волчок), а ось симметрии второго порядка совпадает либо с осью а, либо с осью Ь. Чередование интенсивностей появляется только в том случае, если ось симметрии второго порядка совпадает с осью с (для плоской молекулы это невозможно). Вспоминая, что в полосах типа А молекул, близких к симметричному волчку, ни при каких обстоятельствах не имеются чередования интенсивностей описанного выше типа, мы приходим к выводу, что экспериментальный факт обнаружения чередования интенсивностей резко ограничивает возможные интерпретации исследуемой полосы.  [c.510]


Анализ инфракрасных полос асимметричного волчка. Анализ тонкой структуры инфракрасных полос асимметричного волчка является весьма трудной задачей, за исключением случая молекул, близких к симметричному волчку. Разумеется, в этом последнем случае весь ход анализа совпадает с уже описанным для строго симметричных волчков. Единственное различие состоит в том, что в случае почти вытянутого волчка (ось а есть ось волчка) выражение для энергии дается не формулой (4,41), а формулой (4,90) с т. е. постоянная В[т, должна быть заменена постоянной + м)- более редком случае почти сплющенного волчка (ось с есть ось волчка) постоянная В[т,] в (4,41) заменяется постоянной у (- м Ч м)> а постоянная Л[ ] — постоянной С[1,]. Таким образом анализ полос типа А почти вытянутого волчка дает нам значение ( и- - верхнем и нижнем состояниях. Анализ  [c.514]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

В этом разделе рассмотрена вращательная структура полос только таких молекул, которые по соображениям симметрии могут считаться симметричными волчками, по крайней мере в одном из комбинирующих состояний. Если во втором состоянии молекула несколько асимметрична и, следовательно, не относится к типу истинного симметричного волчка, то при изложении мы будем считать ее все же достаточно близкой к симметричному волчку, благодаря чему можно не учитывать влияние асимметрии.  [c.222]

Рассмотренные примеры относятся к молекулам типа сплюснутого симметричного волчка. Разрешенные полосы параллельного типа для вытянутых волчков еще не наблюдались. Рассчитанная структура таких полос при большом различии между А — В и А" — В" приводится в томе Н ([23], фиг. 122, в, стр. 447).  [c.228]

Полный анализ триплет-синглетного перехода для какой-нибудь молекулы типа истинного симметричного волчка до сих пор произведен не был, хотя рассматривавшаяся выше система полос СНз представляет собой, по всей вероятности, одну из триплетных компонент перехода — (гл. V, разд. 3,6). Примеры таких переходов для почти симметричных волчков приводятся ниже.  [c.242]

Если асимметрия молекулы невелика, то структуру ее полос легче всего расшифровать, исходя из ближайшего симметричного волчка и вводя затем удвоение А-типа, обусловленное асимметрией. Поскольку такое асимметрическое удвоение быстро уменьшается с ростом К, даже сильно асимметричные волчки при больших значениях К могут рассматриваться как почти симметричные. Однако при малых значениях К такой подход возможен лишь при очень малой асимметрии.  [c.247]


Неразрешенные полосы. В случае тяжелых молекул очень часто разрешить структуру полос бывает невозможно. Заключение о природе верхнего состояния иногда можно тем не менее сделать и по неразрешенным полосам, если строение молекулы в основном состоянии известно из микроволновых, инфракрасных спектров или спектров комбинационного рассеяния. Метро-полис [8331 довольно подробно исследовал контуры полос, которые должны быть у молекул типа почти симметричного вытянутого волчка. В частности, он рассмотрел вопрос об оттенении /(Г-структуры и /-структуры, а также  [c.260]

Осн. колебат. полосы линейной многоатомной молекулы, соответствующие переходам из осн. колебат. состояния, могут быть двух типов параллельные ( ) полосы, соответствующие переходам с дипольным моментом перехода, направленным по оси молекулы, и перпендикулярные (i) полосы, отвечающие переходам с дипольным моментом перехода, перпендикулярным оси молекулы. Параллельная полоса состоит только из Я- и Р-ветвей, а в перпендикулярной полосе разрешена также и -ветвь (рис. 2). Спектр осн. полос поглощения молекулы типа симметричного волчка также состоит из II и 1 полос, но вращат. структура этих полос (см. ниже) более сложная -ветвь в 1 полосе также не разрешена. Разрешённые колебат. полосы обозначают V j. Интенсивность полосы Vj. зависит от квадрата производной (ddJdQji) или (da/dQ ) . Если полоса соответствует переходу из возбуждённого состояния на более высокое, то её наз. горячей.  [c.202]

Нужно иметь в виду, что фиг. 150 построена при предположении, что вращательные постоянные верхнего и нижнего состояний равны друг другу. Если оно не выполняется, то все три ветви будут оттенены в ту или иную сторону. Если вращательные постоянные верхнего и нижнего состояний очень сильно различаются, как это может иметь место для инфракрасных полос в фотографической области инфракрасного спектра, то будет отсутствовать сгущение линий около центра полосы (фиг. 150) и ее общий вид совершенно изменится. Примером этого может служить полоса Н2О в области 9400 А, воспроизведенная на фиг. 151,а. С другой стороны, полоса Н О в области 8200 А (фиг. 151,(5) ясно обнаруживает центральную ветвь . Эти две полосы принадлежат молекуле, которую нельзя считать симметричным волчком даже приближенно. На фиг. 152 и 153 приведены две полосы типа А молекул Н СО и С2Н4, которые близки к симметричному волчку (с р — 0,13 и 0,16 соответственно). Нетрудно видеть, что эти полосы практически тождественны параллельным полосам молекул, являющихся симметричными волчками.  [c.501]

В случае перпендикулярных полос каждая подполоса также будет состоять из нескольких подполос, по две на каждое значение нижнего состояния (так как Д/Г( = 1). Ввиду того Что для молекул типа СаН8 доля энергии, определяемая внутренним вращением, согласно (4,118), равна АК , структура подполосы (с заданным значением К и ДЛ") вполне подобна структуре полной перпендикулярной полосы при отсутствии свободного вращения (фиг. 128). Разница состоит только в том, что расстояние между ветвями Q, вырожденными в линии, равно 2А, а не 2 (Л — В). Действительно, как мы видели раньше (стр. 457), интервал между подполосами равен 2Л(1—С,) — 23 в силу взаимодействия составляющих вдоль оси волчка вращательного и колебательного моментов количества движения. Точно так же, согласно Говарду (см. выше), расстояние между подполосами в силу взаимодействия внутренних вращательного и колебательного моментов количества движения (если, как это часто бывает, верхнее состояние типа симметрии Е случайно совпадает с одним из состояний типа симметрии Е") равно 2Л(1—С,). Таким образом, в перпендикулярной полосе молекулы, являющейся симметричным волчком и обладающей свободным внутренним вращением, каждая из вырожденных в линии ветвей Q фиг. 128 будет расщеплена на ряд почти равноотстоящих линий с интервалом 2В (пренебрегая зависимостью Л и й от к). Такая структура полос до сих пор не обнаружена.  [c.528]

Как и в случае молекул типа симметричного волчка, структура полос молекул типа асимметричного волчка ири запрещенных электронных переходах, которые становятся возможными в результате электропно-колебатель-ного взаимодействия, совершенно такая же, как и при разреигепных переходах направление момента перехода и, следовательно, структура полос определяются электронно-колебательной симметрие верхнего и нижнего состояний.  [c.265]

Перпендикулярные полосы. Для перпендикулярных полос молекул типа слегка асимметричного волчка существует правило отбора АК = +1. Помимо этого, должны соблюдаться правила отбора для симметрии (11,97) — (11,99) и электронно-колебательно-вращательные правила отбора, приведенные в табл. 15. На фиг. 106 подробно объясняется структура перпендикулярной полосы аналогично тому, как это б].1Ло сделано на фиг. 99 в случае симметричного волчка. Для простоты было принято, что А =А", В -= В" и С = С". Для построения схемы полосы были использованы уровни совершенно жесткого асимметричного волчка, для которого х = —0,95. Относительные интенсивности были взяты из таблиц Кросса, Хайнера и Кинга [257] для температуры 300° К. Сравнив фиг. 106 с фиг. 99, можно увидеть, что внешний вид грубой структуры (A -структуры) совершенно такой же, как и в случае настоящего симметричного волчка. Если, как мы это и сделали, считать одинаковыми вращательные постоянные в верхнем и нижнем состояниях, то в спектре должен наблюдаться ряд эквидистантных подполос. Если же вращательные постоянные различаются, то подполосы должны расходиться. При небольшом разрешении наиболее характерной особенностью полосы являются ( -ветви этих подполос, правда, теперь уже не похожие но внешнему виду на отдельные линии, как это было в случае симметричного волчка. Как и прежде, подполосы образуют две ветви, одну ветвь типа г и одну ветвь типа р, в соответствии со значением АК = И- 1 и —1, причем одна из них примыкает к другой без какого-либо разрыва.  [c.251]


Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]

Интересной особенностью полос HSi l и HSiBr является присутствие в спектре,-помимо ветвей с АК = 1 и О, ветвей с A, К = +2. Появление этих полос не может быть объяснено отклонением структуры молекулы от симметричного волчка, так как эти отклонения пренебрежимо малы (6 = — 0,00052 для HSi l), и даже в спектрах значительно более асимметричных молекул не имеется никаких намеков на такие ветви, которые в согласии с теорией должны иметь очень малую интенсивность. Герцберг и Верма [545] и Хоуген [574] высказали предположение, что причиной подобной аномалии является спин-орбитальное взаимодействие, или, другими словами, что наблюдаемый электронный переход является переходом типа М" — 1Л, (см. стр. 268). Однако отсутствие заметного триплетного расщепления ставит под сомнение такую интерпретацию. В качестве альтернативы можно, очевидно, рассматривать преобразование (поворот) осей (см. стр. 208).  [c.508]

В качестве примера полосы типа В сильно асимметричного волчка мы воспроизводим на фиг. 157 полученную Нильсеном [665] тонкую структуру обертона 2Vij(Aj) молекулы H.jO. На этой же фигуре приведен спектр, вычисленный при определенных значениях вращательных постоянных верхнего и нижнего состояний. В отличие от полос типа А здесь серии, соответствующие переходам, затрагивающим два наиболее высоких и два наиболее низких уровня каждой совокупности уровней с данным значением J, уже не выделяются среди остальных переходов, и поэтому структура полосы еще более сложна, чем в случае полос типа А. В качестве примеров полосы типа В молекулы, близкой к симметричному волчку, мы приводим на фиг. 158 и фиг. 159 тонкую структуру основных полос V4(6j) и Vj( s ) молекул Hj O и С.2Н4. Они хорошо соответствуют теоретическим спектрам в верхней части фиг. 156. В данном случае мы имеем в основном серию почти равноотстоящих линий, которые представляют собой неразрешенные ветви Q подполос перпендикулярной полосы. Расстояния между последовательными линиями приближенно равны 2А. В противоположность перпендикулярным полосам строго симметричных волчков (см. фиг. 128) полоса Hi на фиг. 159 имеет минимум интенсивности вблизи начала полосы, что согласуется с фиг. 156 и указывает на отклонение от  [c.508]

Наконец, если молекула, близкая к симметричному волчку, имеет симметрию Vf , а ось X (ось С — С в молекуле С.2Н4) совпадает с осью а, то из фиг. 154 (обозначения типов симметрии, приведены в скобках) непосредственно следует, что в нижнем состоянии вращательные уровни с четными значениями К принадлежат к типам симметрии Д и В ъъ. исключением уровней К=0, которые принадлежат к типам А В попеременно), а вращательные уровни с нечетными значениями К принадлежат к типам симметрии В, и В . В верхнем состоянии отнесение уровней будет обратным. Поэтому отношение интенсивностей последовательных подполос (ветвей Q) в полосах типа В должно в основном определяться отношением суммы статистических весов уровней А и 3 к сумме статистических весов уровней 5, и В . Для молекулы С2Н4 это отношение равно 10 6 (см. табл. 11) ). Именно такое чередование интенсивностей хорошо заметно в наблюденной тонкой структуре основной полосы молекулы С2Н4, приведенной на фиг. 159. Линии, соответствующие четному значению К, более интенсивны. Отношение интенсивностей для соответствующей полосы молекулы должно равняться 45 36.  [c.510]

Р , Ру, Р , Р , Р-, Р , составляю Цие индуцироианного дипольного момента 263 Р , Ру. P . операторы полного момента количества движения 226. 403, 431 P , составляющая полного момента количества движения ikj оси волчка 36, 38 PQR, структура ветвей параллельных полос симметричных волчков 448 (], постоянная удвоения типа I 407, 419, 423 q , координаты смещения 86, 222 Q, ветвь в инфракрасных полосах асимметричных волчков 501, 507, 511, 514 линейных молекул 409, 414, 415, 417  [c.637]

До сих пор предполагалось, что в возбужденном состоянии изогнутая молекула относится к типу почти симметричного волчка, т. е. что параметр асимметрии Ъ невелик. Если это не так, то мы все же можем классифицировать вращательные уровни по значению К — квантового числа, описывающего вращение вокруг оси а. Однако в этом случае удвоение -типа будет очень большим и К уже перестает быть хорошим квантовым числом. Следовательно, возможными оказываются переходы с нарушением правила отбора АК — О, 1. Так, например, из основного состояния I" = 0) возможны переходы на уровни верхнего состояния не только с = 0и = 1, но также и с = 2, 3,. ... Рассмотрев полные тины симметрии вращательных уровней, легко убедиться, что если для почти симметричного волчка возможны переходы только с АК = О или только с АК = 1, то для асимметричного волчка возможны только четные или только нечетные значения АК соответственно (а не любые значения, как это имеет место в гибридных полосах). Однако даже при большо11 асимметрии молекулы переходы с АК = = О, 1 являются все же наиболее интенсивными (разд. 3,г, у). Интенсивность быстро уменьшается с ростом АА ], тем более что при этом в одном из комбинирующих состояний квантовое число К определено совершенно строго.  [c.207]

Несмотря на то что молекула НСО в основном состоянии имеет сильно изогнутую форму, она все же достаточно близка к симметричному волчку. Присутствие интенсивных Q-ветвей в наблюдаемых полосах показывает, что они могут рассматриваться как подполосы перпендикулярных полос (ЛА 1), для которых момент перехода перпендикулярен оси молекулы. Поскольку было найдено, что линии Q-ветви связаны с переходами с нижних компонент А -дублетов (фиг. 81), момент перехода должен быть перпендикулярен плоскости молекулы. Отсюда следует, что рассматриваемый электронный переход может быть либо А" — А -, либо Ы — М"-переходом. Поскольку анали.з электронной конфигурации не оставляет сомпопий в том, что основным состоянием молекулы НСО является состояние А, логичным представляется предноложение о том, что наблюдаемый переход является переходом типа А" — А.  [c.507]

Несмотря на то что молекула HN N очень близка к симметричному волчку, Л -удвоение, характерное для симметричного волчка, ясно проявляется для уровней А" = 1 и К" = 1 как удвоение во всех ветвях подполос 2 —1 и 1—2 и как колебательный дефект между Р-, R- и Q-ветвями в подполосах 0—1 и 1—0. Знак инерционного дефекта показывает, что эта полоса является полосой типа С, т. е. что момент перехода перпендикулярен плоскости молекулы. Положительный знак и небольшая величина инерционного дефекта свидетельствуют также о плоской структуре молекулы в обоих электронных состояниях. Геометрические параметры молекулы HN N в обоих состояниях приведены в табл. 67. Присутствие только одной полосы в системе, обуслов.пенной рассматриваемым электронным переходом, находится в согласии с принципом Франка — Кондона, поскольку структура молекулы изменяется при переходе очень мало.  [c.532]


Прн высоком разрешении основные полосы имеют структуру, аналогичную структуре полос С-типа молекулы глиоксаля (разд. 4,в). Эту структуру следует интерпретировать как А -структуру перпендикулярных полос почти симметричного волчка. Молекула образует почти симметричный волчок только для транс-формы  [c.554]

Иннес и Джиддингс [607] изучили на приборе с очень высоким разрешением слабую систему при 3700 А. Они нашли, что в спектре поглощения структура полосы очень похожа на структуру полос 3300 А, т. е. что она является полосой параллельного перехода. Однако наблюдающееся небольшое чередование интенсивности в ветвях заставляет предполагать существование, кроме главных переходов с АК = О, переходов с АК = 2. Для плоской молекулы типа почти симметричного волчка интервал 4 В — С) в (З-ветвях с АК = 2 почти такой же, как и интервал в Р- и Л-ветвях (а именно 2В) в компоненте АК = 0 но компонента АК = 2 будет иметь чередование интенсивностей в отношении 13 11 как функцию К, поскольку ось волчка является осью симметрии второго порядка. Присутствие ветвей А ЛГ = 2 может быть объяснено, если предположить, что переход является переходом триплет — синглет (Герцберг [523] см. гл. II, разд. 3,в). Наиболее вероятно, что этот триплет-синглетный переход является переходом Вз1 — A g, соответствующим переходу Дзи —при 3300 А. Предложенная интерпретация полностью подтвердилась наблюдением Дугласа и ]У1ил-тона [299] большого зеемановского расщепления системы 3700 А.  [c.558]


Смотреть страницы где упоминается термин Полосы молекул типа симметричного волчка : [c.624]    [c.252]    [c.351]    [c.482]    [c.512]    [c.195]    [c.204]    [c.234]    [c.505]    [c.508]    [c.557]    [c.257]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.222 , c.225 , c.226 , c.229 , c.233 , c.236 ]



ПОИСК



274, 323—327 симметричный

В в молекулах типа симметричного

Волосевич

Волчков

Волчок

Волчок симметричный

Главные полосы изогпуто-линейных переходов.— Горячие полосы изогнуто-линейных переходов.— Линейно-изогнутые переходы.— Линейно-изогнутые переходы между состояниями Реннера — Теллера.— Спектры испускания.— Запрещенные переходы Молекулы типа симметричного волчка

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Молекула типа симметричного волчка

Симметричные волчки (молекулы)

Типы полос

Типы полос симметричных волчков



© 2025 Mash-xxl.info Реклама на сайте