Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс переходный в системе с трубопроводом

Процесс переходный в системе с трубопроводом 158. 159  [c.268]

Рнс. 6.9. Расчетная модель (а) и заменяющая ее эквивалентная схема (б) переходного процесса в системе с трубопроводом  [c.158]

Схема расчетная переходного процесса в системе с трубопроводом 158  [c.269]

Определить переходные процессы в системе гидроаккумулятор — трубопровод — гидроцилиндр после мгновенного открытия золотникового устройства 2 в двух случаях 1) дроссель 4 отсутствует 2) коэффициент сопротивления дросселя С = 500.  [c.162]


В соответствии с принятой расчетной схемой и составленным математическим описанием проведены теоретические исследования на ВМ. Типичная осциллограмма, полученная для условий, близких к имевшимся при экспериментальном исследовании, представлена на рис. 2. Сопоставление теоретической и экспериментальной осциллограмм показывает, что принятая расчетная схема и составленное математическое описание достаточно полно отражают основные динамические свойства исследуемой системы и позволяют переносить результаты теоретического исследования на реальные системы. Проведенные теоретические исследования позволили получить более полные характеристики переходных и неустановившихся процессов, возникающих при разгоне и торможении системы, с учетом упругости жидкости и трубопроводов, выбраны рациональная последовательность работы и характеристики управляющей и регулирующей аппаратуры. Результаты исследований показали, что при наилучших параметрах тормозного режима клапана величина тормозного давления составляет 362 и 365 кгс/см , сила удара клапана о седло 6,7 и 5 т соответственно при закрывании и открывании клапана, имеют место отскоки клапана от конечных положений с последующими его ударами о седло или упоры, а в напорной магистрали во время торможения возникают динамические перегрузки. Теоретические исследования режима торможения клапана встроенным гидротормозом, закон изменения проходного сечения которого в функции перемещения поршня уточнен по результатам предварительных теоретических исследований, показали, что такой тормозной режим обеспечивает плавный подход и точную остановку клапана в конечном положении, причем давления в гидросистеме при торможении не превосходят номинальных.  [c.142]

Задача заключается в нахождении постоянных времени и времени запаздывания непосредственно по экспериментально снятой кривой переходного процесса. Из-за наличия в системах автоматического управления упругими перемещениями звеньев с распределенными параметрами (например, трубопроводы в гидравлической части САУ), а также вследствие высокого порядка системы будем в качестве аппроксимирующих выбирать звенья первого и второго порядка с запаздыванием.  [c.517]

Плотность жидкости определяет во многом величину ударного давления при гидравлическом ударе (см. стр. 94), а также сопротивление магистралей в переходных процессах. К примеру для создания некоторого ускорения в трубопроводе ртути с объемным весом 13,6 Г/см потребное давление в 17 раз превышает давление, необходимое при минеральной жидкости с объемным весом 0,8 Псм . При применении первой жидкости инерция в трубопроводах будет настолько большой, что на создание требуемого ускорения столба жидкости (и соответственно торможения) будет расходоваться значительная часть рабочего давления, а также будет замедляться быстродействие системы и реакция последней на командные импульсы (сигналы).  [c.13]


Как показано выше, инерционность измерительной системы СИ и измеряемого процесса из-за конечного времени переходного процесса превращения (преобразования) различных видов энергии (механической, топливной, электрической и др.) приводит к динамическим погрешностям измерений. Динамические погрешности наиболее суш,ественны и опасны (в смысле искажения измерительной информации) при измерении быстропеременных процессов. Например, скорость изменения давления в цилиндрах двигателя внутреннего сгорания достигает 100 ООО кгс/см с ( 10" Па/с), а в топливоподающих трубопроводах дизелей — 500 ООО кгс/см с ( 5/10" Па/с). Поэтому важное значение имеет выбор соответствующей аппаратуры для регистрации этих изменений.  [c.204]

Изложенное относится к стационарному режиму движения, однако, используя разработанный метод расчета построением циклобары [1], можно получить соответствующие зависимости для переходных процессов — пуска и торможения гидропривода. В системах с сравнительно небольшой приведенной массой при резком включении и выключении предохранительный клапан не успевает сработать. В таком случае максимальное давление определяется упругостью системы (деформациями масла и трубопроводов). При периодически изменяющейся нагрузке (частые включения и выключения), колебания числа оборотов первичного двигателя заметно влияют на движение гидропривода. Регуляторная характеристика двигателя внутреннего сгорания при этом принимает вид, показанный на рис. 3 штрих-пунктириой линией.  [c.320]

Для получения более полных характеристик переходных и неустановившихся процессов, возникающих при разгоне и торможении системы с учетом упругости жидкости и трубопроводов, уточнения предложенного закона изменения проходного сечения встроенного гидротормоза, назначения оптимальной последовательности работы и характеристик управляющей и регулирующей аппаратуры, выбора оптимальных характеристик и разработки методов расчета систем такого типа выполнены теоретические исследования, в которых расчетная схема гидропривода (рис. 3) принята в виде четырехмассовой системы с упругими связями одностороннего действия. Масса 9 представляет собой суммарную массу вращающихся частей насосного агрегата, масса Шд — приведенную к поршню массу связанных с ним деталей и части жидкости гидросистемы, массы и Шз — эквиваленты распределенной массы жидкости в трубопроводах гидросистемы. Упругие связи гидросистемы обусловлены податливостью жидкости и трубопроводов. Система находится под действием концевых усилий электродвигателя Рд, подпорного клапана Рп и приложенных в промежуточных сечениях упругих связей сил сопротивления ДР,, величины которых зависят от расходов жидкости через соответствующие сечения гидросистемы. В сечениях 1 и 8 прикладываются силы сопротивления, возникающие при протекании жидкости через проходные сечения электрогидравлического распределителя. После подачи команды на перемещение золотника распределителя площади указанных проходных сечений изменяются во времени от нулевой до максимальной. В сечениях Зяб прикладываются силы сопротивления, возникающие при протекании жидкости через автономные дроссели, проходное сечение которых изменяется от максимального до минимального, обеспечивающего ползучую скорость поршня в конце хода и обратно, в зависимости от пути поршня на участке торможения и разгона.  [c.140]

Система уравнений, описывающая переходный процесс в гидроприводе, должна содержать также динамические характеристики трубопроводов с учетом волновых процессов, происходящих в момент резкого наре.члючения распределителя. Так, для напорного трубопровода динамическая характеристика имеет вид f, (-at)-А(at)  [c.113]

Исследование устойчивости и переходных процессов в гидравлической системе управления насос переменной производительности — трубо-проводы — гидромотор — нагрузка является частью общей задачи исследования динамики замкнутой силовой гидравлической следящей системы. Изучению системы насос — трубопроводы — гидромотор — нагрузка посвящено значительное число работ [1—8], в которых рассматриваются отдельные свойства этой системы, но не затрагиваются вопросы комплексного изучения сложной системы, включающей гидравлические и механические элементы в различных сочетаниях. Важной особенностью силовой гидравлической системы является невозможность представления ее в виде последовательной цепочки простейших звеньев с однонаправленным действием переменной величины на выходе одного звена и на входе последующего звена, что исключает использование обычных методов теории автоматического управления [9, 10].  [c.42]


Гидравлический удар в силовых цилиндрах. Большой практический интерес представляет гидравлический удар в силовых цилиндрах и в других закрытых жестких емкостях, ударные давления в которых могут нарушить, в результате выдавливания уплотнительного кольца в уплотняемый зазор, герметичность соединений, а также вызвать разрушение самих емкостей и их элементов. Опыт показывает, что максимальные значения ударных давлений при волновом переходном процессе в системе силового цилиндра с весовым поршнем могут при определенных условиях значительно превышать ударное давление при прямом гидравлическом ударе в трубе, определяемое по уравнению (1.123). Так, например, испытания показывают, что ударные давления при мгновенной остановке движущегося поршня силового цилиндра с помощью жесткого шора могут достигать при распространенных скоростях (приблизительно 8—12 м1сек) движения жидкости в подводящем трубопроводе трехкратного значения рабочего давления в системе.  [c.98]

Увеличение размеров аппарата вдвое почти удваивает максимальный коэффициент усиления при условии, что все постоянные времени, кроме вре.мени пребывания, остаются без изменений время пребывания в аппарате обычно намного больше остальных инерционностей в системе, и, вероятно, произойдет лишь небольшое уменьшение критической частоты. К сожалению, увеличение размеров аппарата приводит к росту величины запаздывания смешения, что уменьшает возможные преимущества больших аппаратов. Кроме того, использование большого аппарата для того, чтобы обеспечить удовлетворительное затухание переходных процессов, может оказаться дороже, чем применение небольшого аппарата с более точной системой регулирования, в частности состоящей из двух регуляторов. Большую часть реагента можно, например, подавать во входной трубопровод или в небольшой дополнительный аппарат, установленный перед основным главный регулятор при этом регулирует небольшой расход, необходимый для завершения реакции. Применяются также другие схемы, включающие системы каскадного регулирования или параллельные потоки [Л. 11, 12].  [c.460]

Существуют различия между ЕГСС и трубопроводными системами, транспортирующими жидкости, в частности, в капельном состоянии [26]. В трубопроводах для транспортировки жидкостей при изменении режимов возникают ударные волны, которые могут быть причиной аварии и отказов оборудования. Благодаря сжимаемости газа процессы в газопроводах более инерционны. Ударные волны в газе при имеющих место в эксплуатации скоростях течения не представляют опасности для труб, запорного и компрессорного оборудования, так как возникающие скачки давления сглаживаются и переход от одного режима к другому происходит плавно. Длительность переходных процессов в магистральных газопроводах варьирует от нескольких десятков минут до нескольких часов. Поэтому отказы оборудования обычно не приводят к отказам на смежных компрессорных станциях (КС). Чем больше система, тем меньше сказываются последствия единичных отказов на результатах работы всей системы. Дефицит располагаемой мощности на одной из КС может быть частично возмещен за счет интенсивной работы смежных КС. Поскольку обычно несколько параллельных газопроводов работают с открытыми перемычками, то и поток флюида при отказах линейной части уменьшается пропорционально на всех гидравлически связанных нитках. Лишь при наиболее значительных отказах, которые следует квалифицировать как ава -рии, существенное отклонение режимов от номинальных происходит на нескольких последовательно расположенных КС.  [c.20]


Смотреть страницы где упоминается термин Процесс переходный в системе с трубопроводом : [c.341]    [c.44]   
Расчет пневмоприводов (1975) -- [ c.158 , c.159 ]



ПОИСК



1---переходные

Переходный процесс

Схема расчетная переходного процесса в системе с трубопроводом

Трубопроводы системы



© 2025 Mash-xxl.info Реклама на сайте