Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазы легированной стали

Фазы легированных сталей  [c.164]

Фазы легированных сталей — это легированный аустенит, легированный феррит и карбиды. Первая фаза является основой нержавеющих, жаропрочных II немагнитных сталей вторая — основной составляющей нержавеющих и легированных конструкционных сталей.  [c.164]

Рассмотрим карбидную фазу легированных сталей. Она отличается от цементита и специальных карбидов легирующих элементов, поскольку на базе простых карбидов образуются специфические твердые растворы.  [c.164]


Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]

Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические фазы — окислы, силикаты, сульфиды и др.  [c.16]

ФАЗЫ ЛЕГИРОВАННОЙ СТАЛИ  [c.563]

ФАЗЫ ЛЕГИРОВАННОЕ СТАЛИ  [c.567]

КАРБИДНАЯ ФАЗА В ЛЕГИРОВАННЫХ СТАЛЯХ  [c.352]

Фазы и структурные составляющие в легированных сталях и сплавах  [c.160]

Легирование сталей 81 (2%) способствует образованию а-фазы в виде небольших равномерно распределенных дисперсных частиц.  [c.270]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


При 885° кристаллическая решетка титана из плотноупакованной гексагональной становится кубической объемно-центрированной. Плотноупакованная фаза титана является низкотемпературной, тогда как в железе она высокотемпературная. Ведь структура железа при 910° меняется — из кубической объемно-центрированной превращается в кубическую гране-центрированную. Полиморфное превращение позволяет производить термическую обработку сплавов титана аналогично сплавам легированных сталей.  [c.38]

Влияние легирующих элементов на кинетику распада мартенсита при температурах до 150° С — слабое в легированной стали распад при этих температурах протекает почти с теми же скоростями, что и в углеродистой стали. Наличие легирующих элементов существенно сказывается при температурах, превышающих 150° С, что связано с процессом коагуляции карбидных частиц. Установлено, что карбидообразующие элементы (хром, титан, ванадий, молибден, вольфрам), резко замедляющие диффузию углерода, замедляют коагуляцию карбидной фазы и процесс распада при температурах выще 150° С.  [c.16]

Применение в настоящей работе метода радиоактивных изотопов позволило оценить сравнительную износоустойчивость обработанных по различным режимам деталей, исследовать процесс переноса металла при трении и получить характеристику степени легированности различных фаз цементированной стали.  [c.14]

С целью увеличения количества избыточной карбидной фазы при разработке состава комплексно-легированной стали содержание хрома повысили до 1,2—1,5%.  [c.84]

Карбидная фаза в легированной стали  [c.333]

Термическое старение при температурах 350. .. 500 °С может привести к появлению 475°-ной хрупкости. Выдержка аустенитно-феррит-ных швов при температуре 500. .. 650 °С приводит к старению в основном за счет выпадения карбидов. Одновременно идет процесс образования ст-фазы. Легирование сталей титаном и ниобием приводит к дисперсионному упрочнению стали за счет образования их прочных карбидов. Являясь ферритизаторами, титан и ниобий, способствуя образованию в шве ферритной составляющей, увеличивают количество ст-фазы в металле. Выдержки при температуре 700. .. 850 °С значительно интенсифицируют образование а-фазы с соответствующим охрупчиванием металла при более низких температурах и снижением предела ползучести при высоких температурах. При этих температурах возрастает роль и интер-металлидного упрочнения за счет образования, в частности, интерметал-лидных фаз железа с титаном и ниобием.  [c.355]

ВБСденнем ко . понс тоз, повышающих термодпна ич оск чо устойчивость анодной фазы (легирование стали никелем, легирование никеля медью, легирование меди золотом)  [c.59]

Легирующие элементы второй группы уменьшают область существования у-фазы. При определенных концентрациях а-фаза стабильна При комнатной температуре - такие сплавы называют ферритньши, а когда происходит частичное превращение (фазовое равновесие) - полуферритными. Часто применяется многокомпонентное легирование стали. Общее влияние примесей достаточно сложно. Можно отметить, что углерод обычно расширяет температурную и концентрационную области существования у-фазы легированных сталей.  [c.92]

По своей природе перечисленные хромистые стали близки к углеродистым сталям примерно с 1% С. Хром растворим в обеих фазах отожженной стали— в феррите и цементите. Легированны.ч хромом цементит медленнее растворяется в аустените, а аустенит, содержащий хром, медленнее распадается, чем и объясняется меньшая критическая скорость закалки этих сталей по сравпе-иню с углеродистыми (табл. 44).  [c.406]

Карбидная фаза в легированных сталях. По отношению к углероду ле1 ирующие элементы иодразде,/1яются на дне группы  [c.136]

При азотировании легированных сталей ниже эвтектоидной температуры на поверхности образуется сплощной слой s-фазы, а также слон г+у, за которым следует а-фаза, сопровождаемая у -фазой и дисперсными нитридами легирующих элементов (A1N, faN, MoN и др ). Эта часть слоя имеет характерное сорбитообразное строение. При температурах выше 591° С в структуре после медленного охлаждения присутствует эвтектоид а-Ьу.  [c.146]


По структуре в отожженном состоянии определяют структуру легированной стали в равновесном состояшн . По этому признаку легированные стали делят на доэвтектоидные, заэвтектоидные и ле-дебуритные. Доэвтектоидные стали содержат в структуре свободный феррит заэвтектоидные — избыточные карбиды ледебуритные— первичные карбиды, выделившиеся из жидкой фазы.  [c.173]

Стальные валки. Литейные стальные валки изготавливают из нелегированных и легированных сталей, содержащих 0,4 - 2,0% С. В зависимости от содержания углерода и легирующих элементов структура этих сталей изменяется от перлитно-ферритной до перлитной с включениями карбидной фазы. Валки из доэвтектоидных сталей имеют низкую износостойкость, но хорошо выдерживают ударные нагрузки. Валки из заэвтектоидных - более тверщых сталей подвергают сложной термообработке для размельчения карбидов, их сфероидизации с целью повышения вязкости стали. Для прокатки тонкого нержавеющего листа валки изготавливают из быстрорежущей стали Р18 методом ковки.  [c.330]

ТЕМПЕРАТУРНЫЙ УРОВЕНЬ РЕКРИСТАЛЛИЗАЦИИ ГЕТЕРОФАЗНЫХ СПЛАВОВ. Большинство промышленных сплавов является сплавами гетерофазными. Чаще всего они представляют пластичную поликристал-лическую матрицу, содержащую вкрапления твердых дисперсных частиц. Такими сплавами являются все углеродистые и легированные стали, алюминиевые сплавы, жаропрочные никелевые и железные сплавы, композитные сплавы металл — тугоплавная дисперсная фаза.  [c.349]

В литературе опубликованы многочисленные данные о том, что легирование стали карбидо- и нитридообразующими элементами (Nb, V, Ti, А1 и др.) задерживает динамическую рекристаллизацию и тем эффективнее, чем меньше склонность соответствующих карбонитрид-ных фаз к коагуляции.  [c.544]

Легированные стали. В термически обработанном состоянии эти стали имеют высокий предел текучести и высокую твердость, что обеспечивает их высокую износостойкость в разнообразных условиях эксплуатации. Упрочнение от действия дисперсных частиц упрочняющей фазы достигается за счет гюдбора состава стали и оптимальной термической или химико-термической обработки.  [c.16]

Основные результаты, полученные при исследовании указанных свойств В. Д. Садовским, Е. Н. Соколковым и другими исследователями, представлены в табл. 6. Там же указаны технологические режимы ВТМО и для сравнения приведены свойства исследованных сталей в неупрочненном состоянии (после закалки по стандартному режиму). ВТМО, особенно с подсту-живанием после начального нагрева до 950—900°, чтобы предотвратить развитие рекристаллизации, может привести к увеличению более чем в 2 раза ударной вязкости легированной стали [77, 92], а в некоторых случаях (сталь 20ХНЗ) — повысить ее почти в 10 раз [90]. При этом степень обжатия упрочняемого металла на первой стадии ВТМО не превышает 20— 30%. Изменение характера разрушения упрочненных сталей, повышение их вязкости и снижение чувствительности к обратимой отпускной хрупкости связываются [77, 91] с локализацией деформации по границам аустенитного зерна исходного нагрева и с искажением кристаллической решетки межзеренных переходных зон, сохраняемых после закалки, что изменяет условия выпадения и коагуляции фаз, способствующих развитию отпускной хрупкости, а также ослабляющих связь между соседними зернами [16, 13].  [c.56]

К химическому методу относится также контактное осажденрге металлов из раствора. Для листовых полуфабрикатов применяется горячий способ нанесения покрытий из расплавов цинка, олова, алюминия. Металлические покрытия должны обладать хорошей пластичностью. Пластичность покрытия определяется промежуточным слоем интерметаллидов, образующихся в результате реактивной диффузии. Для регулирования пластичности в расплавы вводятся добавки других металлов. В промышлен-иости применяется также термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием и другими элементами G целью повышения их жаростойкости и коррозионной стойкости в агрессивных средах. Процесс проводится при высоких температурах из измельченной твердой или газовой фазы хлоридов или других соединений соответствующих металлов.  [c.49]

В работах ряда исследователей утверждается, что соиротивле-иие изнашиванию легированных сталей в значительной степени определяется количеством, формой, размерами и расположением карбидной фазы.  [c.102]

Бурное развитие исследований качества стали имело место в послевоенные годы. Оно шло несколькими путями. На первой стадии развивались традиции предвоенных лет и велась дальнейшая разработка новых композиций конструкционной стали. Постепенно повышалось содержание углерода — главного носителя упрочняющей фазы в сталях. Одновременно подбиралось легирование с тем, чтобы снижение пластичности и сопротивления отрыву в связи с изменением содержания углерода не зашло слишком далеко. Так были созданы марки высокопрочной стали для авиации ЗОХГСНА, ВЛ1, ВЛ1-Д с пределом прочности Ов = 160 — 180 кПмм и ЭИ643сав = 190 — 210 кПмм . Одновременно стала ясна невозможность обеспечить дальнейшее повышение прочности путем легирования.  [c.195]

При газовом азотировании образование на поверхности е-фазы происходит в результате диффузии и постепенного увеличения концентрации азота в твердом растворе. При ионном азотировании в образовании диффузионного слоя помимо обычного процесса диффузии участвует процесс обратного катодного распыления, в результате которого атомы материала катода, выбитые с поверхности, соединяются в плазме тлеющего разряда с азотом и оседают на поверхности образца, покрывая ее равномерным слоем е -фазы. Если материалом служит легированная сталь, явление катодного распыления усложняется. В начале процесса один из металлов удаляется быстрее другого, в результате чего на поверхности сплава образуется тонкий спой нового однородного соединения. Это позволяет предположить, что приобретение поверхностью образцов из стали 38Х2МЮА защитных свойств связано, кроме нитридного слоя какого-либо из легирующих элементов.  [c.173]


Прочность металлов увеличивают, во-первых, путем легирования сталей элементами, образующими твердые растворы внедрения или замещения и вызывающими искажение решетки растворителя. При некоторых соотношениях легирующих элементов и углерода в сталях и сплавах образуются твердые карбиды и интерметаллидные включения, значительно усложняющие обрабатываемость резанием. Во-вторых, термической и термомеханической обработкой, в результате которой повышается плотность дислокаций, уменьшается величина зерна, создается вторая интерметал-лидная дисперсная фаза в матрице. Термомеханическая обработка некоторых сплавов (например, Ni—Сг—Мо) вызывает появление концентрационных неоднородностей, повышающих сопротивление деформации, нарушающих стабильность физико-механических свойств и тем затрудняющих обрабатываемость резанием.  [c.326]

Структура азотированного слоя легированной стали. Вблизи поверхности азотированной стали 38ХМЮА чаш,е всего располагается тонкая, хрупкая, не травящаяся нитридная зона слоя, которая состоит из 8- и Y -фазы или -, е- и у -фаз. За этой зоной располагается основная зона азотированного слоя, отличающаяся при небольшом увеличении от сорбитовой структуры сердцевины стали лишь большей травимостью. Эта зона слоя состоит из а-и у -фаз, а в части этой зоны, примыкающей к нитридной каемке, иногда присутствуют нитриды железа в виде тонких прожилок. Дисперсные нитриды легирующих элементов при обычно принятых увеличениях на микроструктурах не видны.  [c.174]

Наблюдается также резкое снижение термостойкости — с 840 до 220 циклов. Жаростойкость сталей возрастает с 4,244 г/см -ч при 10,11% Сг по мере повышения концентрации хрома, достигая 0,24 г/см -ч при 20,29% Сг. Введение углерода повышает твердость сталей на 4—7 ед, HRB, временное сопротивление на 10—15% и снижает пластичность и ударную вязкость вследствие интенсивного карбидообразования. Незначительно снижается также жаростойкость. Пластические свойства, ударная вязкость и термостойкость сталей с азотом заметно выше, чем с углеродом. Совместное легирование сталей углеродом и азотом приводит к повышению твердости, временного сопротивления и снижению пластических свойств. В целом влияние азота и углерода на свойства сталей объясняется повышением стабильности аустенита, расширением аусте-нитной области и смещением начала образования а-фазы в сторону более высоких содержаний хрома.  [c.105]

По экспериментальным данным [105], предельная растворимость углерода в поверхностном слое и объеме отливки из сплавов на основе никеля, железа и кобальта составляет (%) 0,55 и 1,85, 2,0 и 2,06, 0,1 и 1,65 соответственно. Растворимость железа, циркония, церия, титана, хрома, магния в поверхностном слое и объеме отливок из алюминия составляет 0,05/0,17, 0,0/8,0, 0,0/9,0, 0,15/0,32, 0,7/5,8, 17/36 соответственно. При этом необходимо учитывать, что при избытке поступающих элементов в поверхностном слое отливки образуются соединения типа Me jj, Ме Н, , NVe Oy, Me Sy и другие твердые фазы, наличие которых резко увеличивает твердость, трещиночувствительность, физическую и химическую неоднородность отливки. По активности образования новых твердых фаз в поверхностном слое первое место занимают отливки из титана и его сплавов, второе — отливки из чугуна, третье — из легированных сталей. Кроме того, если к отливкам предъявляются высокие требования по теплоотдаче в условиях эксплуатации, то при выборе металла для отливок с развитой поверхностью учитывают его теплопроводность.  [c.12]


Смотреть страницы где упоминается термин Фазы легированной стали : [c.288]    [c.33]    [c.113]    [c.147]    [c.241]    [c.243]    [c.289]    [c.17]    [c.153]    [c.157]    [c.33]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.563 ]



ПОИСК



Карбидная фаза в легированной стали

Легированные стали —

П фазы

Фазы легированной стали (В. С. Меськин)



© 2025 Mash-xxl.info Реклама на сайте