Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Междуатомные расстояния линейных молекул

Хотя одной из конечных задач является точное определение всех междуатомных расстояний в многоатомной молекуле, в конкретных случаях достигается уже существенный успех, если удается качественно определить форму молекулы, т. е. расположение атомов (линейность или нелинейность молекулы и т. д.). Часто качественных особенностей спектра бывает достаточно для того, чтобы сделать такие заключения, особенно в случаях, когда молекула обладает некоторой симметрией. Весьма общим свойством является качественное различие спектров молекул, обладающих различной симметрией. Это обстоятельство гораздо существеннее при изучении многоатомных молекул, чем при изучении двухатомных молекул, так как для многоатомных молекул возможно значительно большее число типов симметрии (точечных групп), чем для двухатомных молекул, которые могут быть только двух типов — с одинаковыми ядрами или с различными ядрами.  [c.11]


В табл. 42 для ряда линейных несимметричных молекул приведены наблюденные значения частот и силовые постоянные, вычисленные из них с помощью (2,198—200). При расчете были использованы значения междуатомных расстояний, полученные из других источников. Они приведены в столбцах под рубрикой и 4. Как и следовало ожидать, постоянная /(/1/2) всегда значительно меньше как постоянной так и постоянной ко, т. е. силы, препятствующие изменению длин связей, много больше, чем силы, препятствующие изменению угла.  [c.191]

Междуатомные расстояния в линейных многоатомных молекулах, полученные ия вращательно-колебательных спектров, и сравнение их с междуатомными расстояниями в соответствующих двухатомных молекулах  [c.424]

Определение междуатомных расстояний явление изотопии. Чрезвычайно важными данными при решении вопроса о геометрической структуре линейных молекул являются данные о междуатомных расстояниях. Однако лишь в случае симметричных линейных молекул типа XY (точечная группа D oh) возможно непосредственно определить междуатомные расстояния только из момента инерции молекулы. Это обусловливается тем, что в данном случае два междуатомных расстояния равны между собой и момент инерции молекулы будет просто равняться 1 =2т г . Именно таким. методом междуатомные расстояния в молекулах СО и S. , приведенные в табл. 130, были непосред-  [c.424]

Для всех других молекул, помимо симметричных линейных молекул типа ХУа, при наличии двух или нескольких различных междуатомных расстояний их, разумеется, нельзя определить только из одного момента инерции.В этих случаях недостающее уравнение (или уравнения) можно получить, изучая спектры изотопных молекул. При этом можно сделать единственное предположение, что для изотопных молекул остается неизменной потенциальна функция, и следовательно, и междуатомные расстояния. Это предположение оправдалось в большом числе случаев при изучении явления изотопии для колебаний многоатомных молекул (см. гл. II, раздел 6) и особенно при изучении явления изотопии для вращения и колебания двухатомных молекул. Ва всех изотопных двухатомных молекулах, за исключением двухатомных молекул с низкими возбужденными электронными уровнями (для которых теоретически следует ожидать небольшую разницу порядка 0,001 10" см в междуатомных расстояниях), междуатомные расстояния, как и следует ожидать ), равньг в пре делах ошибок измерений ( 0,0002- 10 см). Так как рассматриваемые здесь-линейные многоатомные молекулы не имеют низких электронных уровней, то-можно с уверенностью считать, что междуатомные расстояния изотопных молекул являются одинаковыми с точностью, значительно большей, чем 0,001 Ю см. Следует иметь в виду, что такого точного совпадения можн ожидать только для равновесных расстояний г для средних (эффективных) междуатомных расстояний Го в нижнем колебательном уровне столь точного совпадения не будет, так как различные изотопные молекулы имеют различные амплитуды нулевого колебания. Однако даже и расстояния Гд будут равны с точностью, большей чем 0,002-10 см ).  [c.425]


Решение с помощью внутренних координат. Относительное положение атомов задается ЗЛ — 6 (или ЗМ—5) координатами. Вместо того чтобы следовать изложенному выше способу, можно выразить потенциальную и кинетическую энергию как функции этих ЗЛА —6 внутренних координат и таким путем получить непосредственно вековое уравнение порядка 3//—6, не содержащее нулевых решений. Имеется много возможностей для выбора внутренних координат (см. Вильсон и Кроуфорд [943]). Пожалуй, наиболее естественным в случае несимметричной молекулы является выбор в качестве координат ЗМ—6 междуатомных расстояний или, точнее, изменения Q ЪЫ—6 равновесных расстояний между атомами. Такие координаты также называют центрально-силовыми координатами (см., например, Шефер и Ньютон [778]), так как они лучше всего соответствуют центральной сис-теме сил (см. стр. 85). Вследствие того что при малых амплитудах эти координаты являются линейными функциями от прямоугольных координат смещений, потенциальная энергия является квадратичной функцией от координат (3,- и может быть записана в виде  [c.161]

В табл. 45 приведены наблюденные значения основных частот трех линейных молекул СаНа, СаОа И и силовые постоянные 1, к., к 111ц), полученные для них по формулам ( 221), (2,223) и (2,224). Междуатомные расстояния предполагаются известными. Три последние столбца содержат значения левых и правых частей (2,222), а также значення частоты вычисленные из (2,225) при использовании постоянной бД г)) причем последняя определена из частоты у,. Легко видеть, что для молекул ацетилена уравнение (2,222) выполняется совершенно удовлетворительно. В то же время, вычисленное значение частоты % очень плохо согласуется с экспериментальным. С другой стороны, для молекулы циана плохо выполняется уравнение (2,222), но имеется хорошее совпадение для частоты ><5.  [c.198]

Аналогично линейным молекулам, составляющие р , Ру и р колебательного момента количества движения даются уравнениями вида (4,11), где h-—постоянные, зависящие от равновесных расстояний между атомами, от силовых постоянных и от масс. Однако в данном случае могут быть отличными от нуля, если даже i и k относятся к двум составляющим вырожденного колебания. Постоянные С,-, введенные нами выше, как раз и относятся к вырожденному колебанию и дают изменение энергии первого порядка, тогда как все остальные jf дают изменение энергии только второго порядка величины, т. е. приводят к добавлению некототой величины к вращательным постоянным а,. Сильвер и Шефер [790] и Шефер [776, 777] дали явную (но довольно сложную) формулу для , в зависимости от масс, силовых постоянных и междуатомных расстояний для случая плоских и пирамидальных молекул типа ХУ и аксиальных молекул типа XYZs (см. также Ян [468]).  [c.433]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Магнитное квантовое число 38 Магнитный дипольный момент 259 Матрица дипольного момента 271 индуцированного дипольного момента 275 Матричные элементы составляющих тензора полиризуемости 275. 279, 288, 291, 469 функции возмущения 234, 237 электрического дипольного момента 44, 71, 274, 288, 443 Мгновенная ось вращения асимметричных волчков 57 симметричных волчков 36 сферических иолчков 51 Междуатомные расстояния асимметричных волчков 519 изотопических молекул 424.466 линейных молекул 34, 192, 423 симметричных волчков 428, 466 тетраэдрических молекул 486 Механические модели для решения задачи о колебаниях 176 Миноры векового определителя, определение формы нормального колебания 83,87. 161, 164, 169, 172, 176 Множитель Больцмана 271, 283, 28Э Множитель, обусловленный ядерным спином, во вращательной части статистической суммы 539, 553 Модели молекулы, механические, для изучения колебаний молекулы 78,176 Модель потенциальной поверхности 219 Модификации, не комбинирующие асимметричных волчков 67, 498 влияние на термодинамические функции 538, 544, 553 линейных молекул 29 симметричных волчков 41—43, 444 тетраэдрических молекул 53, 482 Молекулы  [c.604]


Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]


Смотреть страницы где упоминается термин Междуатомные расстояния линейных молекул : [c.402]    [c.405]    [c.636]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.34 , c.192 , c.423 ]



ПОИСК



XYa, молекулы, линейные, симметричные междуатомные расстояния

Линейные молекулы

Междуатомные расстояния

Расстояние

С = О, расстояния в молекулах СОа



© 2025 Mash-xxl.info Реклама на сайте