Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные покрытия электродов

Металл Защитное покрытие Электроды сравнения Среда  [c.229]

Большую часть современных промышленных защитных покрытий электродов для дуговой сварки сталей по их металлургическому действию можно разбить на следующие основные группы  [c.119]

Защитные покрытия электродов 377,  [c.507]

Наплавка деталей, не несущих больших нагрузок и работающих при небольших скоростях, может производиться электродами с защитными покрытиями (электроды ОММ-5, УОНИ-13/45 или УОНИ-13/55).  [c.92]


Что же касается азота, то защитные газы и шлаки должны максимально предохранять расплавленный металл от контакта с азотом воздуха, так как дальнейшие меры по удалению азота из сварочной ванны малоэффективны. Вследствие этого количество покрытия на электроде, расход защитного газа, количество или толщина слоя флюса подбираются из условия максимально возможной защиты сварочной ванны от окружающего воздуха. Например, коэффициент массы покрытия /( , т. е. отношение массы защитного покрытия электрода к массе покрытого стерл<ня электрода ис-  [c.29]

Защитные покрытия электродов для ручной сварки сталей и наплавки поверхностных слоев с особыми свойствами разделяются на основные четыре вида, обозначаемые (по ГОСТ 9466—75) буквами А, Б, Ц и Р  [c.50]

При ручной сварке различного рода манипуляторы, позиционеры или стенды применяют для сборки и закрепления деталей, подлежащих сварке. Качество сварного шва во многом определяется искусством сварщика, а нри механическом перемещении изделий —- колебаниями скорости их перемеш,ени/г манипуляторами. Защита свариваемого металла обеспечивается покрытием электрода. При применении н е полуавтоматов для дуговой сварки сварочная ванна защищается флюсом или защитным газом, подаваемым через сварочную головку.  [c.123]

Ручную дуговую сварку выполняют сварочными электродами, которые вручную подают в дугу и перемещают вдоль заготовки. В процессе сварки металлическим покрытым электродом (рис. 5.7) дуга S горит между стержнем электрода 7 и основным металлом /. Стержень электрода плавится, и расплавленный металл каплями стекает в металлическую ванну 9. Вместе со стержнем плавится покрытие электрода 6, образуя газовую защитную атмосферу 5 вокруг дуги и жидкую шлаковую ванну 4 на поверхности расплавленного металла. Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги сварочная ванна затвердевает и формируется сварной шов 3. Жидкий шлак после остывания образует твердую шлаковую корку 2.  [c.190]

Производительность процесса в основном определяется сварочным током. Однако ток при ручной сварке покрытыми электродами ограничен, так как повышение тока сверх рекомендованного значения приводит к разогреву стержня электрода, отслаиванию покрытия, сильному разбрызгиванию и угару расплавленного металла. Ручную сварку постепенно заменяют полуавтоматической в атмосфере защитных газов.  [c.193]


В жестких сварных узлах, в которых образуются высокие сварочные напряжения, в закаленной з. т. в. возможно образование холодных трещин. Склонность к холодным трещинам повышается при насыщении металла водородом, который снижает пластичность закаленного металла. Источником водорода служит влага в покрытиях электродов, флюсах и защитных газах, которая разлагается в дуге, и атомарный водород насыщает жидкий металл сварочной ванны. В результате диффузии водорода им насыщается также 3. т. в.  [c.232]

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]

Стальные электроды применяются при дуговой электрической сварке конструкционных, легированных сталей, сталей с особыми свойствами, при сварке чугунов и при наплавке. Металлические электроды для дуговой сварки черных металлов разделяются по свойствам покрытий на электроды с ионизирующим покрытием (тонкопокрытые) и электроды с защитным покрытием (толстопокрытые), которые способны наряду с защитой значительно легировать металл шва, меняя химический состав и механические свойства наплавленного металла.  [c.31]

Участки I и II ВАХ соответствуют режимам сварки, применяемым при ручной сварке плавящимся покрытым электродом, а также неплавящимся электродом в среде защитных газов. Механизированная сварка под флюсом соответствует II области и частично захватывает III область при использовании тонких электродных проволок и повышенной плотности тока, сварка плавящимся электродом в защитных газах соответствует III области ВАХ. Для питания дуги с падающей или жесткой ВАХ применяют источники питания с падающей или пологопадающей внешней характеристикой. Для питания дуги с возрастающей ВАХ применяют источники тока с жесткой или возрастающей внешней характеристикой.  [c.57]

Преимуществами сварки в защитных газах являются высокая производительность (приблизительно в 2,5 раза выше, чем при ручной дуговой сварке покрытыми электродами) простота механизации и автоматизации  [c.79]

Виды сварки высоколегированных сталей. Для сварки высоколегированных сталей используют ручную дуговую сварку покрытыми электродами, механизированную и ручную в защитных газах, сварку под флюсом, электрошлаковую, лучевые виды сварки, контактную и ряд других.  [c.127]

Основными видами сварки меди являются ручная дуговая покрытыми электродами, автоматическая под флюсом, в защитных газах плавящимся и неплавящимся электродом, газовая. В связи с высокой теплопроводностью меди сварку ведут на повышенных по сравнению со сталью величинах тока. Например, при ручной дуговой сварке покрытыми электродами величина тока выбирается из расчета /<.в=(50ч-60) э, где — диаметр электрода сварка ведется на постоянном токе с подогревом до 200—250°С. Мощность газового пламени по расходу ацетилена выбирают из расчета для толщин б<10 мм ис,н,=150-6 л/ч, для 6>Ю мм Ос.н.=200-6 л/ч е использованием, нормального пламени и флюсов на основе буры.  [c.137]


Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]

При электродуговой сварке под действием тепла, выделяемого электрической дугой, соединяемые элементы / (рис. 4.1, а) оплавляются, и оплавленный металл вместе с металлом электрода 2, обмазанного защитным покрытием, образует прочный шов. При расплавлении электрода защитная обмазка выделяет большое количество шлака и газа, которые способствуют более устойчивому горению дуги и защищают расплавленный металл от окисления кислородом воздуха. Этим способом свариваются конструкционные стали любых марок, чугун, алюминиевые и медные сплавы.  [c.399]

У малых защищаемых объектов омическое падение напряжения в грунте, вызываемое током катодной защиты, может быть также определено (при допущении о статистически равномерном распределении дефектов) умножением суммарного тока защиты на сопротивление растеканию переменного тока. Так как дефекты в защитном покрытии объекта имеют различные размеры, расчет дает только среднее падение напряжения, а сопоставление с данными измерений при электродах сравнения, расположенных над резервуаром-хранилищем и в особенности в колодце над куполом, свидетельствует о большом разбросе этих результатов измерения и о том, что омическое падение напряжения часто получается завышенным (см. рис. 3.4).  [c.107]

Кабели с алюминиевой оболочкой по возможности не следует соединять с кабелями других типов, поскольку алюминий имеет самый отрицательный потенциал среди всех материалов, применяемых для оболочек кабелей, из-за чего любой дефект в защитном покрытии становится анодом. При очень малом отношении площадей анода и катода плотность тока получается большой, и кабель с алюминиевой оболочкой из-за этого быстро разрушается. Алюминий может подвергаться также и катодной коррозии (см. рис. 2.16). Поэтому при подключении кабелей с алюминиевой оболочкой к системам катодной защиты потенциал кабеля (по медносульфатному электроду сравнения) нельзя снижать до более отрицательных значений, чем —1,3 В (см. раздел 2.4). Кабели с алюминиевой оболочкой прокладывают лишь в исключительных случаях, и то только тогда, когда грунт не содержит большого количества солей, а блуждающие токи отсутствуют.  [c.299]

Сварка покрытыми электродами Сварка под флюсом Сварка в защитных газах Сварка порошковой проволокой  [c.219]

Намечается тенденция уменьшения объема внедрения ручной сварки углеродистых сталей покрытым электродом и сварки под флюсом сплошной проволокой за счет увеличения объема сварки в защитных газах и 224  [c.224]

Рис. 37. Оценка тенденций изменения объема потребления основных видов сварочных материалов в перспективе до 1990 г. N — число экспертов I — объем потребления уменьшится, //—не изменится, /// — увеличится А — покрытые электроды Б — сплошная проволока для механизированных способов сварки В— порошковая проволока Г — флюсы Д — С0.2, инертные газы и их смеси, защитные газы, смеси активные и инертные Рис. 37. Оценка тенденций изменения объема потребления <a href="/info/4442">основных видов</a> сварочных материалов в перспективе до 1990 г. N — число экспертов I — объем потребления уменьшится, //—не изменится, /// — увеличится А — <a href="/info/7502">покрытые электроды</a> Б — сплошная проволока для механизированных <a href="/info/120400">способов сварки</a> В— <a href="/info/64074">порошковая проволока</a> Г — флюсы Д — С0.2, <a href="/info/22502">инертные газы</a> и их смеси, <a href="/info/120217">защитные газы</a>, смеси активные и инертные
Сварка малоуглеродистой стали с защитными покрытиями должна производиться на жёстких режимах, чтобы поверхность деталей, прилегающая к электродам, оставалась относительно холодной. При таком ведении процесса не повреждается покрытие на наружной стороне деталей.  [c.372]

Наплавленный металл. Толщина основного металла 12 мм. Схема располол<ения образцов представлена на рис. 5.3, а. Сварка покрытыми электродами, в защитных газах и газовая сварка. Образец должен располагаться выше пунктирной линии q — не менее пяти слоев.  [c.481]

Наплавленный металл. Наплавка производится на ребро пластины толщиной 20 мм. Длина пластины не менее 80 мм. Для удержания металла устанавливаются медные планки А. Схема расположения образцов см. рис. 5.3, б. Сварка покрытыми электродами, в защитных газах и газовая сварка. Образец должен располагаться выше пунктирной линии q не менее пяти слоев, но не менее 10 мм.  [c.481]

Наплавленный металл. Наплавка ведется в медную форму. Элементы формы могут охлаждаться водой. Схема расположения образцов см. рис. 5.3, в. Сварка покрытыми электродами, в защитных газах и газовая сварка. Число слоев q не менее шести. Образец располагается вдоль направления сварки.  [c.481]


Металл стыкового многопроходного шва. Толщина основного металла 12 мм. Схема расположения образцов см. рис. 5.3,5. Сварка покрытыми электродами, в защитных газах и газовая сварка.  [c.482]

Надрез на образцах типов VI и IX при испытании многослойных швов, выполненных покрытыми электродами, в защитных газах и газовой сваркой разрешается располагать по схеме, приведенной на рис. 5.6, б.  [c.487]

Поэтому состав защитного покрытия электродов или ф.тюса, а также режим нагрева при сварке должны обеспечивать нормальное протекание химических реакций в зоне сварки.  [c.19]

К сварочным материалам относят сварочную проволоку, присадочные прутки, порошковую проволоку, плавящиеся покрытые электроды, пеплавящиеся электроды, различные флюсы, защитные (активные и инертные) газы.  [c.83]

При ручной дуговой наплавке покрытыми электродами, а особенно при механизированной наплавке плавящейся электродной проволокой в среде защитных газов или под флюсом, доля основного металла в наплавленнол слое Уо, 1<ак правило, ие может быть, без опасности получения пепровара, снижена менее чем на 0,2.  [c.397]

Сварочную проволоку используют также при автоматической дуговой сварке под флюсом, сварке плавящимся электродом в среде защитных газов и как присадочный материал при дуговой сварке неплавящимся электродом и газовой сварке. Покрытия электродоп предназначены для обеспечения стабильного горения дуги, защиты расплавленного металла от воздействия воздуха и получения металла шва заданного состава и свойств. В состав покрытия электродов входят стабилизирующие, газообразующне, шлакообразующие, раскисляющие, легирующие и связующие составляюище.  [c.191]

По сравнению с ручной сваркой покрытыми электродами и автоматической под флюсом сварка в защитных газах имеет следующие преимущества высокую степень защиты расплавленного металла от воздействия воздуха отсутствие на поверхности шва при применении аргона оксидов и шлаковых включении возможность ведения процесса во всех гфостранственных положениях возможность визуального наблюдения за процессом формирования шва п его регулирования более высокую производительность процесса, чем при ручной дуговой сварке относительно низкую стоимость сварки в углекислом газе.  [c.198]

Для определения пористости применяют реактив, состоящий из красной кровяной соли, хлористого натрия н желатины. Водным раствором указанных веществ пропитывают полости филь-Tpo. ia.iiiHoii бумаги и во влажном состоянии прикладывают их к образцу, покрытому пленкой. По прошествии 4--5 мин в местах пор появляются резкие синие пятна. Пористость выражают числом пор па 10 гдЕ поверхности испытуемого образца. Пористость опре ц лиется также гальвапометрическим путем. Этот метод основан па появлении гальванических токов, которые возникают вследствие обнажения металла в случае разрушения защитного покрытия. При испытании погружают образец металла с покры-тие 11 угольный. электрод в агрессивную среду и присоединяют.  [c.365]

Рис. 55. Схемы методов контроля сплошности защитных покрытий а - электроискрового б - электролитического в - электрического 1 - металлическая стенка изделия 2 - защитное покрытие 3 - щетка-искатель 4 - преобразователь напряжения ( 30 кВ) 5 - поролоновая вставка щупа 6 - преобразователь тока ( -110.Г. 120 В) 7 -электролит 8 - вспомогательный электрод 9 - тфеобразователь тока ( 110 В) Рис. 55. <a href="/info/672392">Схемы методов</a> контроля сплошности <a href="/info/29832">защитных покрытий</a> а - электроискрового б - электролитического в - электрического 1 - металлическая стенка изделия 2 - <a href="/info/29832">защитное покрытие</a> 3 - щетка-искатель 4 - <a href="/info/267338">преобразователь напряжения</a> ( 30 кВ) 5 - поролоновая вставка щупа 6 - <a href="/info/39746">преобразователь тока</a> ( -110.Г. 120 В) 7 -электролит 8 - вспомогательный электрод 9 - тфеобразователь тока ( 110 В)
Цинк применяют для защитных покрытий, в качестве составной части латуней и как материал для электродов гальванических элементов. Кроме того, его используют в фотоэлементах и для металлизации бумаги в металлобумажных конденсаторах. Нанесение метшшического слоя на бумагу производят путем испарения цинка в вакууме при температуре порядка 600°С.  [c.34]

Цинк — светлый металл, получаемый металлургическими методами и очищаемый электролитически. Цинк марки ЦВ (высокоочн-щенный) содержит не менее 99,99 % Zn и не более 0,01 % примесей (РЬ, Fe, d, Си). При комнатной температуре цинк хрупок при нагреве до 100 °С он становится тягучим и пластичным, а при дальнейшем нагреве (свыше 200 Т) — снова хрупким. Цинк применяется в качестве защитных покрытий, составной части латуней, из него изготовляются электроды гальванических элементов. Кроме того, он пспользуется в фотоэлементах и для металлизации бумаги в малогабаритных металлобумажных конденсаторах. Нанесение металлического слоя на бумагу производят путем испарения цинка в вакууме при температуре 600 °С.  [c.218]

Рис. 20.8. Схема системы защиты от коррозии резервуара (ванны) для горячей воды с защитным покрытием на пивоваренном заводе I — проволочный анод из платиннрованиого титана 2 — изолированный ввод 3 электрод сравнения Рис. 20.8. <a href="/info/534386">Схема системы</a> защиты от коррозии резервуара (ванны) для <a href="/info/272477">горячей воды</a> с <a href="/info/29832">защитным покрытием</a> на пивоваренном заводе I — <a href="/info/39749">проволочный анод</a> из платиннрованиого титана 2 — изолированный ввод 3 электрод сравнения
По оценкам экспертов, для легированных сталей 1едует ожидать резкого снижения объема использова-ая сварки покрытым электродом и сварки под флюсом повышения объема внедрения сварки в защитных 1зах (рис. 35, б), а также внедрения электрошлаковой электрогазовой сварки и незначительного использова-ия сварки порошковой проволокой и плазменной  [c.225]

Данные, полученные при оценке тенденций потре( ления сварочных материалов, хорошо согласуются с р( зу ьтатами опроса экспертов при выборе перспективны способов сварки. Например, учитывая внедрение в мг шиностроение сталей повышенной прочности и увелг чение объема применения различных сплавов, сварк в среде защитных газов и главным образом инертных безусловно, будет применяться в более широких обт емах по сравнению с существующим уровнем и в ряд случаев вытеснит ручную сварку покрытым электродо и под флюсом. Поэтому вполне закономерно, что боль щинство экспертов высказалось за увеличение потреб ления защитных газов и, особенно, инертных.  [c.226]

Металл стыкового многопроходного шва с предварительной наплавкой кролюк и подкладки не менее чем в три слоя. Для наплавки применяют испытываемые материалы. Ширина подкладки 30 мм. Толщина основного металла 20 мм. Схема расположения образцов см. рис. 5.3,ж. Зазор между стыкуемыми кромками 16 мм. Сварка покрытыми электродами, в защитных газах и газовая сварка. В рабочее сечение образца не должен попадать металл, наплавленный на кромки пластин и на подкладку.  [c.483]


Смотреть страницы где упоминается термин Защитные покрытия электродов : [c.19]    [c.186]    [c.21]    [c.48]    [c.89]    [c.225]    [c.226]    [c.357]    [c.483]   
Металловедение и технология металлов (1988) -- [ c.377 , c.379 ]



ПОИСК



Покрытие защитное

Электрод без покрытия



© 2025 Mash-xxl.info Реклама на сайте