Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия — Единицы измерения и меры

Энергия — Единицы измерения и меры 5, 9, 14 Эпициклоиды — Построение 68 Эталоны 323  [c.1144]

К сожалению, система СИ полностью игнорирует тот факт, что кельвин есть просто одна из единиц энергии. Конечно, температура и энергия—это разные величины, но количественная мера у них одинакова. Поэтому выделение в этой системе особой единицы температуры —не просто как единицы, удобной для ее измерения, а как единицы, принципиально отличной от единицы измерения энергии, объясняется стремлением не порывать полностью с исторической традицией.  [c.88]


Биологический эффект зависит от вида излучения и условий облучения. Так, в случае альфа-излучения, если радиоактивное вещество не попало внутрь организма, указанная экспозиционная доза не окажет практически никакого биологического воздействия. Мерой воздействия ионизирующего излучения на вещество служит поглощенная доза —средняя энергия, переданная излучением единице массы вещества. В старой системе единицей измерения поглощенной дозы служил рад (1 рад=0,01 Дж/кг). В СИ в качестве единицы поглощенной дозы принят грэй (Гр), при этом I Гр==1 Дж/кг. Расчет поглощенной дозы, однако, даже в том случае, если известны все данные о радиоактивном источнике, является непростой задачей.  [c.340]

Хотя нейтроны сами по себе не ионизируют вещество, они вызывают образование вторичных заряженных частиц, которые производят ионизацию. Именно это обстоятельство следует иметь в виду, когда речь идет о значении L л для нейтронов. Для тепловых нейтронов (т. е. нейтронов с энергиями ниже примерно (),1 эВ) Q=l, для быстрых нейтронов Q 10, Суммарные сведения относительно единиц измерения излучений приводятся в табл. 14.4. Как уже указывалось выше, для измерения радиационных эффектов следует использовать единицу системы СИ зиверт. Это — новая единица, и пока она используется не слишком широко (в 1975 г. зиверт еще не попал в число единиц, рекомендованных 15-й Генеральной конференцией по вопросам мер и весов предполагается, что такая рекомендация будет выдана в ближайшее время). Некоторые страны уже перешли на использование новых единиц, хотя при этом иногда возникают определенные проблемы. Так, в Великобритании в ка-  [c.341]

Действие внешнего облучения на организм. Действие излучения на живую ткань является сложной функцией природы излучения, потока излучения и энергии частиц или фотонов, входящих в его состав. Результирующее физическое воздействие этих факторов на стандартный материал можно выразить через его ионизацию либо через поглощенную в нем энергию. Единица измерения рентген служит мерой ионизации воздуха у >злучением. Рентген численно равен экс-  [c.112]

Из определения (4) следует, что размерность волнового числа обратна длине, т. е. выражается как Самой распространенной в спектроскопии единицей измерения волновых чисел является СМ1, иногда называемый кайзером, В связи с переходом на единую международную систему единиц следует волновые числа выражать в Волновое число может сложить и мерой величины, пропорциональной энергии. Действительно, энергия кванта  [c.10]


Казалось бы совершенно рациональным и для измерения теплоты использовать в качестве единицы джоуль, отказавшись от употребления калории. Эта мысль высказывалась уже давно, однако только в 1948 г. IX Генеральная конференция по мерам и весам приняла решение об использовании джоуля в качестве единицы измерения теплоты. В соответствии с этим решением и Международной системой единиц ГОСТом Тепловые единицы [4] установлено, что измерение тепловых величин так же, как и других видов энергии, должно производиться в джоулях. В этом же ГОСТе, однако, указано, что в качестве временной меры допускается измерение тепловых величин и в калориях. Последнее решение вызвано тем, что в настоящее время полный отказ от калории и переход на джоули крайне затруднен вследствие очень широкого и долголетнего применения калории не только в науке, но и в промышленности, и в быту. Важно отметить, что величина калории теперь уже никак не связывается с теплоемкостью воды и определением этой единицы является только ее соотношение с джоулем. ГОСТом 8550—61 установлено принятое 5-й Международной конференцией по свойствам водяного пара (Лондон, 1956 г.) соотношение 1 /сал=4,1868 дж [5, 6].  [c.180]

Таким образом, температура может представлять собой как параметр состояния, определяющий качественную (тепловую) сторону процесса, так и потенциал переноса тепловой энергии, определяющий количественную сторону процесса. Поскольку измерение температуры связано с использованием определенных тел и их термометрических свойств, а при разных температурах тела имеют разные энергетические состояния и разные физические свойства, постольку принятая единица измерения температуры (1 град) является по существу лишь мерой масштаба принятой температурной шкалы и процесс измерения температуры является определением положения на температурной шкале уровня измеряемой температуры. Поэтому особое значение в термометрии имеет принцип построения и воспроизведения температурной шкалы.  [c.196]

В основе закона сохранения и превращения энергии лежит принцип эквивалентности различных видов энергии. В процессе развития науки были вначале найдены количественные меры для каждого вида энергии. Раньше всего была установлена количественная мера для механической энергии. Она получила название механической работы. Впоследствии были найдены меры и для других видов энергии (химической, электрической, тепловой и т. д.). Они получили названия соответственно химической работы, электрической работы, а для тепловой энергии— теплоты. Для каждой из этих мер первоначально принималась своя единица измерения. Так, количество теплоты измерялось в килокалориях ккал), количество механической работы — в килограмм-метрах (кГ-м).  [c.12]

Однако это уравнение не приводится к безразмерному виду число параметров п = 3, для их измерения необходимы четыре основные единицы измерения к = 4) длина, время, масса и температура (или к = 3, если температуру измерять мерой изменения кинетической энергии молекул, т. е. п — к = 3—4 < О, или п — к = = 3—3-= 0). Зависимость (1.1) к безразмерному виду не приводится. Очевидно,  [c.186]

Любой механизм на тепловозе, являющийся источником энергии, ее преобразователем или потребителем, представляет собой источник колебаний, в том числе звуковых. Чем больше мощность механизма на единицу объема или его поверхности, тем больше вызываемый им шум. С ростом удельной габаритной мощности и быстроходности дизелей вопрос о снижении и мерах борьбы с распространением шумов становится все более актуальным. Шум, как известно, представляет собой сложный звуковой процесс с богатым спектром звуковых волн. Учитывая отчетливо выраженную способность человеческого уха оценивать не абсолютное, а относительное изменение силы звука, за единицу ( объективную ) измерения разности логарифмических уровней силы звука принимают децибел, равный 0,1 бела, а уровень шума дизелей в соответствии с ОСТ 24.060.12—72 оценивается величиной уровня звукового давления, вычисляемого по формуле  [c.217]


Для исследования зависимости силы фототока от длины волны необходимо определить силу тока насыщения, соответствующего определенной лучистой энергии монохроматического света. Результаты подобных измерений приведены на рис. 32.7, где по оси ординат отложена сала тока насыщения /, отнесенная к поглощенной лучистой энергии, а по оси абсцисс — длина волны X. Рис. 32.7 показывает, что красная граница соответствует Я, = 1ц и с уменьшением длины волны сила тока на единицу поглощенной энергии возрастает. Это значит, что свет с более короткой длиной волны более эффективен. Если принять во внимание, что чем короче длина волны падающего света, тем меньше квантов содержится в единице поглощенной энергии (ибо для коротких волн сами кванты, равные /IV = кс Х, больше), то из кривой рис. 32.7 ясно видно, как сильно растет способность фотонов выделять электроны по мере перехода к более крупным фотонам.  [c.644]

Принцип метода состоит в измерении разности теплот растворения мелкокристаллических и крупнозернистых исходных веществ. Если разница теплот растворения относится к единице поверхности, то она является мерой межфазной энергии. Наряду с калориметрическим измерением теплот растворения необходимы точные данные о величине поверхностей взятых исходных веществ.  [c.260]

Ионизирующее действие Р. л. Под влиянием проходящих Р. л. воздух и другие газы делаются проводящими благодаря возникающим в них ионам. Если между электродами создать ионизацию воздуха, то ион направится к электроду обратного знака по отношению к заряду иона, и возникает электрич. ток. При возрастании потенциала между электродами этот ток увеличивается однако до определенного предела (ток насыщения), который наступает, когда все образующиеся ноны будут достигать электрода, не успев уничтожиться путем соединения с ионом противоположного знака (рекомбинация). Ток насыщения может служить мерой интенсивности Р. л. По международному соглашению в Стокгольме (в 1928 г.) постановлено считать интенсивность Р. л. равной единице, сли при полном использовании энергии возникших в воздухе вторичных электронов они вызывают появление тока насыщения в одну электростатич. единицу (3,3 А). Измерения производятся с помощью ионизационной камеры (фиг. 3) Р. л. посту-  [c.307]

Температура Тявляется мерой нагрева рабочего тела и характеризует его внутреннюю энергию. За единицу температуры принимают градус, который имеет одинаковое значение в наиболее распространенных температурных шкалах Цельсия (С) и Кельвина (К). Температурная шкала Цельсия, в которой за ноль принимается температура таяния льда, получила распространение в быгу и бытовых приборах. В температурной шкале Кельврша за ноль принимается температура, при которой полностью прекращается движение молекул. Температура, определенная в соответствии с этой шкалой, называется абсолютной температурой. Шкала Кельвина используется в термодинамических расчетах. Температура, измеренная по шкале Кельвина (Г), и температура, измеренная по шкале Цельсия (/), связаны между собой следуюищм соотношением  [c.86]

Мерой движения является физическая величина, называемая энергией. Установив меру движения материи, можно сравнивать меладу собой в количественном отношении движения материи различных форм, подобно тому как при помощи меры инертности — массы — мы сравниваем между собой инертность различных по природе тел. Мера двнл<ения — энергия — является величиной скалярной. Можно установить и единицу измерения энергии. Тогда количественно движение данной формы описывается числом этих единиц.  [c.132]

Непосредственное измерение температуры невозможно, так как она характеризует состояние термодинамического равновесия макроскопической системы, является мерой теплового движения, и для ее измерения нельзя ввести эталон, как в случае аддитивных величин (длины, массы, времени). Возможность определения температуры основана на том, что при изменении температуры изменяются внутренние параметры системы, и измерение какого-либо из этих параметров позволяет нс1ходить температуру с помощью уравнения состояния системы [1.5]. Единицы измерений (градусы) и способы их стандартизации выбираются путем соглашения между экспертами. Единица измерения термодинамической температуры (кельвин) определяется как 1/273,16 температуры, соответствующей тройной точке воды. Направление температурной шкалы также выбрано условно считается, что при сообщении телу энергии при постоянных внешних параметрах его температура повышается [1.6].  [c.8]

Приведем некоторые сведения относительно современного состояния вопроса об установлении единиц измерения энергии и теплоты. До настоящего времени в практике измерения физических величин используют несколько систем единиц. Последним ГОСТом [2] для измерения механических единиц допускается применение трех систем единиц системы МКС (метр, килограмм, секунда), системы СГС (сантиметр, грамм, секунда) и системы МКГСС (метр, килограмм-сила, секунда). Однако в этом ГОСТе указано, что преимущественно должна применяться система МКС. Кроме того, в соответствии с решениями X и XI Генеральных/конференций по мерам и весам (1954 и 1960 гг.) в СССР утвержден ГОСТ [3] Международная система единиц . Этот стандарт устанавливает как предпочтительную во всех областях науки, техники и народного хозяйства Международную систему единиц, основными единицами которой являются метр, килограмм, секунда, ампер, градус Кельвина и свеча. Международная система единиц является, следовательно, системой МКС, дополненной еще тремя основными единицами — ампер, градус Кельвина и свеча. Таким образом, в настоящее время могут встретиться случаи использования 4-х систем единиц измерения физических величин МКС, СГС, МКГСС и Международной системы единиц.  [c.179]


Интерпретация фиктивных сил как сил гравитационных решающим образом подтверждается тем, что они имеют существенное свойство, общее с обычным гравитационным полем — их способность всем свободным частицам сообщать одинаковое ускорение независимо от их массы. Первым это свойство для гравитационного поля Земли доказал Галилей. В качестве результата своих экспериментов он смог сформулировать утверждение, что в пустом пространстве все тела падают с одинаковой скоростью . Этот результат выражает просто тот факт, что сила, с которой гравитационное поле земли действует на частицу, пропорциональна инертной массе частицы, определяющей инертность частицы к изменению состояния ее движения. Когда скорость частицы мала по сравнению со скоростью света, ее движение в направлении гравитационного поля описывается уравнением тх = т -, гдет — масса частицы их — ее ускорение в направлении гравитационного поля. Величина есть мера напряженности гравитационного поля и не зависит от массы частицы. Отсюда утверждается, что отношение инертной массы частицы к ее гравитационной массе является универсальной константой, зависящей лишь от единиц измерения. Эта теорема теперь доказана многочисленными экспериментами [84, 85, 240, 286, 209]. Наиболее точные из них — эксперименты Этвеша, Зеемана и Дикке. В результате всех экспериментов были получены одинаковые значения отношений инертной и гравитационной масс. Особенно интересны эксперименты Саутернса и Зеемана с ураном, относительно которого в то время уже было известно, что он обладает большим дефектом массы. В гл. 3 мы видели, что любой энергии Е соответствует инертная масса т = Е с , что подтверждено многочисленными ядерными экспериментами (см. 3.7). Масса, определяемая при помощи масс-спектрографа, очевидно, является инертной массой, и результат Зеемана по-  [c.180]

Поскольку прежде всего интерес представляют биологические эффекты, вызываемые различными излучениями и связанные с поглощением энергии в живой тканн, может показаться достаточным использовать для измерения радиационных эффектов такие общепринятые единицы, как джоули или джоули на килограмм. В действительности, однако, действие излучений на вещество представляет собой несколько более сложный процесс, чем простая передача энергии от одного вещества другому, в связи с чем возникает необходимость применения специальных единиц. В 1975 г. 15-я Генеральная конференция по вопросам мер и весов рекомендовала применять для измерения излучений и радиационных эффектов систему единиц СИ. Поскольку, однако, в течение многих лет во всем мире широко использовалась специальная систе.ма единиц, рекомендации Генеральной конференции предусматривают 10-летний (до 1985 г.) переходный период, в течение которого допускается применение прежней системы единиц. Поэтому в настоящей монографии приводятся определения как новых, так и старых единиц радиационных измерений, хотя при изложении материала, насколько это возможно, используются единицы СИ. В то же время данные, заимствованные из литературных источников, выражаются в тех единицах, которые были использованы авторами оригинальных публикаций.  [c.339]

Эта зависимость показана графически на фиг. 172, б (кривая 1 в = 0). Мы видим, что порядок величины 52в.вн.вр. составляет несколько единиц энтропии. С другой стороны, очевидно, что при очень большой высоте потенциального барьера, когда крутильное колебание обладает высокой частотой, соответствующая часть энтропии (и свободной энергии), вычисленная по формуле (5,82), очень мала, по крайней мере при низких температурах. Помимо кривых для свободного вращения, на фиг. 172,6 приведены кривые зависимости от температуры для доли энтропии 52н.вр., определяемой внутренним вращением, для нескольких промежуточных значений высоты потенциального барьера. Они получены из таблиц Питцера и Гвина. На фиг. 172, а даны кривые зависимости 1н.вр. от высоты потенциального барьера для трех различных температур. С помощью этих кривых можно производить и обратную операцию, т. е. определять высоту барьера, препятствующего вращению на основании измерений энтропии. При этом все другие составные части энтропии могут быть вычислены из спектроскопических данных. Кружки и квадратики на фиг. 172, дают наблюденные значения н.вр. (= 5 абл.— йосг. — 5 — 5 ) для этана и диметилацетилена соответственно (Витт и Кемп [947] и Иост, Осборн и Гарнер [972]). Отсюда видно, что значение 5вн. вр. для молекулы этана близко к кривой Кд = 3000 кал., а для молекулы диметилацетилена — к кривой для свободного вращения К = 0. Эти результаты подтверждают выводы, уже сделанные на основании данных для теплоемкости.  [c.555]

ГАММА-СПЕКТРОМЕТР, прибор для измерения энергии квантов гамма-излу-чен ия и его интенсивности (числа 7-квантов в 1 с). В большинстве Г.-с. энергия 7-квантов определяется по энергии заряж. ч-ц, возникающих в результате вз-ствия 7-излучения с в-вом. Осн. хар-ками Г.-с. явл. эффективность и разрешающая способность. Эффективность определяется вероятностями образования вторичной ч-цы и её регистрации. Разрешающая способность Г.-с. характеризует возможность разделения двух 7-линий, близких по энергии. Мерой разрешающей способности обычно служит относит, ширина линии, получаемой при измерении монохроматич. 7-излучения количественно она определяется отношением Аё1ё, где Аё — ширина линии (в энергетич. единицах) на половине её высоты, ё — энергия вторичной ч-цы.  [c.108]


Смотреть страницы где упоминается термин Энергия — Единицы измерения и меры : [c.12]    [c.10]    [c.183]    [c.396]    [c.290]    [c.304]    [c.82]    [c.413]   
Краткий справочник металлиста (0) -- [ c.5 , c.9 , c.14 ]



ПОИСК



224 — Единицы измерени

Единицы измерения

Измерение энергии

Меры и единицы

Энергия единица измерения

Энергия — Единицы

Энергия — Единицы измерени



© 2025 Mash-xxl.info Реклама на сайте