Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ИЗГИБ — КОВКА

Холодная обработка магниевых сплавов путем изгиба или ковки, вероятно, не оказывает влияния на химическую стойкость материала.  [c.543]

Различают серый, ковкий, высокопрочный и другие виды чугуна, из которых первые два особенно широко используются в машиностроении. В обозначение марок серого чугуна входят буквы СЧ и группы цифр, первая из которых выражает предел прочности при растяжении в кгс/мк, вторая — предел прочности при изгибе в кгс/мм, например СЧ 21—40 ГОСТ 1412—79 . В обозначение марок ковкого чугуна входят буквы КЧ и группы цифр, характеризующие предел прочности при разрыве в кгс/мм и относительное удлинение в процентах, например КЧ 45—6 ГОСТ 1215—79 . В обозначении высокопрочного чугуна ВЧ 70—3 ГОСТ 7293— 79 первая группа цифр показывает предел прочности при разрыве в кгс/мм, вторая — предел текучести в кгс/мм.  [c.290]


Округлые включения шаровидного графита не создают резкой концентрации напряжений, такие включения не являются трещинами и чугун с шаровидным графитом имеет значительно бо.пее высокую прочность при растяжении и изгибе, чем чугун с пластинчатым графитом (отсюда и название чугуна с шаровидным графитом — высокопрочный чугун). Ковкий чугун с хлопьевидным графитом занимает промежуточное положение по прочности между обычным серым и высокопрочным чугуном.  [c.213]

Ч у г у н ы разделяют на серый, ковкий и легированный со специальными свойствами. Наиболее распространены отливки из серого чугуна, выпускаемого по ГОСТ 1412—85 (СТ СЭВ 4560—84), марок 10, 15, 18, 20, 25, 30, 35. Чем больше число, тем чугун тверже и прочнее на растяжение и изгиб. Так, чугун марок 10 и 15 применяют для слабо нагруженных деталей (крышки, кожухи, корпуса подшипников и т. п.) марок 20...35 — для станин металлорежущих станков, зубчатых колес и т. п. Для ответственных деталей и сложной конфигурации (коленчатые валы, корпуса насосов, поршневые кольца и т. п.) применяют высокопрочный чугун марок 35... 100 по ГОСТ 7293—85.  [c.199]

Таким образом, практика подтверждает результаты исследований, что хрупкость и пластичность не есть неизменные свойства материалов, а являются лишь состояниями, в которых материалы могут находиться. Под влиянием различных факторов материалы могут переходить из хрупкого состояния в пластичное и наоборот. Например, высокоуглеродистые инструментальные стали, хрупкие при комнатной температуре, становятся пластичными при высоких температурах и поддаются горячей пластической обработке то же самое можно сказать и о ковких чугунах. Инструментальные стали, хрупкие при растяжении или изгибе, ведут себя как пластичные при деформации кручением и т.д.  [c.113]

Для определения допустимых режимов нагрева, температурных интервалов ковки и штамповки, степени, скорости и схемы деформации, условий охлаждения поковок, а также необходимого усилия оборудования следует знать зависимость механических свойств обрабатываемого материала от температуры деформирования. Механические свойства определяют различными методами испытаний на растяжение, сжатие, кручение и ударный изгиб.  [c.89]

Удвоенная прочность по сравнению с нелегированным титаном. Хорошая пластичность, включая изгиб. Ковка, прокатка и штамповка идут легче, чем у сплавов а или (сплавы р имеют лучшую пластичность при изгибе). Сравнительная простота массового производства. Возможность получения высокой прочности путем термической обработки  [c.371]


Немонотонность деформации в процессах ОМД может быть различного характера, особенно при дробном нагружении. Наибольшая немонотонность характерна для знакопеременного деформирования (поперечная ковка и прокатка, винтовая прокатка, волочение). При проведении механических испытаний немонотонность моделируется методом чередования нагружения сжатием — растяжением, малоцикловой усталостью, изгибом и кручением и т. д.  [c.16]

Чугун серый (ГОСТ 1412 — 70). Чугун ковкий (ГОСТ 1215 — 59). Чугун высокопрочный с шаровидным графитом (ГОСТ 7293—70) Буквами СЧ, КЧ, ВЧ. Первое двухзначное число обозначает предел прочности при растяжении в кГ/мм, второе для серого чугуна — предел прочности при изгибе в кГ/мм (СЧ 12-28) для ковкого чугуна — относительное удлинение в % (КЧ 30-6) для высокопрочного чугуна — ударную вязкость в кГм см (ВЧ 50-2)  [c.141]

Ударная вязкость—см. под названием отдельных предметов с подрубрикой — Ударная вязкость, например. Чугун ковкий — Ударная вязкость Ударные испытания на изгиб 3 — 34  [c.316]

Фиг. 86. Диаграмма деформаций ковкого чугуна [3] 1— растяжение 2— сжатие 3— изгиб Г— кручение.- Фиг. 86. <a href="/info/70471">Диаграмма деформаций ковкого</a> чугуна [3] 1— растяжение 2— сжатие 3— изгиб Г— кручение.-
Действие надрезов на усталостную прочность ферритного ковкого чугуна характеризуется следующими показателями предела усталости при изгибе образец без надреза (адо)р = 13,7 0,7 кг мм. 2 с надрезом (аш) ==  [c.75]

В заготовках наблюдается иногда закат заусенца" (трещина на поверхности), распространяющийся по всей длине штанги. Обнаружить трещину нетрудно осадкой на торец отрезанного (длиной не больше 2d) куска полосы. По границе заката" при осадке металл образует бахрому-изгиб края трещины. Такие закаты следует вырубать перед ковкой.  [c.267]

Оптимальные температуры ковки вновь разрабатываемых и осваиваемых сталей и сплавов могут быть определены по результатам следующего комплекса испытаний (табл. 13) [10] 1) на осадку, 2) на удар изгибом, 3) на определение сопротивления деформации, 4) на рекристаллизацию обработки, 5) на склонность к перегреву (собирательная рекристаллизация).  [c.289]

Малоуглеродистые, среднеуглеродистые, низко- И среднелегированные конструкционные стали при испытании на осадку в интервале температур ковки и горячей штамповки (800—1200° С) не обнаруживают хрупкого состояния. Исключение составляет общеизвестная хрупкость сталей при температурах 300— 500° С, называемая синеломкостью, и хрупкость армко-железа при температурах 820— 1100 С. Эти зоны хрупкости обнаруживаются как при испытании на осадку, так и при испытании на удар изгибом.  [c.289]

Испытание на удар изгибом в отношении оценки пластического состояния металла при обработке ковкой и штамповкой является достаточно точным методом испытания, так как при обработке  [c.289]

Предел выносливости при изгибе фер-ритного ковкого чугуна в 1,2—2 раза меньше, чем у стали, но в 2—6 раз больше, чем у серого чугуна, и составляет 10—  [c.122]

На рис. 6 показана диаграмма выносливости ковкого чугуна при изгибе по несимметричному циклу. Из графика видно, что компактная форма графита и бли-  [c.122]

Экономическую эффективность секционной штамповки можно показать на таком примере на поковку коленчатого вала судового двигателя, изготовляемого горячей ковкой, требуется слиток весом 9 т, а для получения такого вала штамповкой по частям нужна заготовка весом 2,5 т. Вес кованого вала составляет 6 г, а штампованного—1,1 т. Следовательно, более прогрессивный технологический процесс дает возможность уменьшить расход металла по каждому изделию более чем на 70% и снизить вес поковки более чем в 4 раза. Кроме этого, при механической обработке кованого вала волокна в поковке перерезаются, а в штампованном коленчатом вале они располагаются по контуру изгибов, что повышает прочность изделия.  [c.42]


Значительны преимущества ВПЧ перед ковким чугуном. Высокопрочный чугун не требует длительного отжига, из него можно отливать более тяжелые детали, в том числе работающие на изгиб и кручение при высоких температурах (до 1150° С) и в парах серы, кислорода, водяного пара и др.  [c.48]

В настоящее время хорошо изучена структурная анизотропия материалов, обусловленная способом изготовления заготовок (прокаткой, ковкой, протяжкой, резанием и кристаллизацией). В зависимости от направления вырезки образцов и места приложения нагрузки изменяются жесткость и прочность заготовок при испытании на изгиб, кручение и растяжение. В то же время имеется мало данных по использованию геометрической анизотропии для улучшения свойств поверхности и поверхностного слоя деталей.  [c.19]

Серый чугун маркируется буквами СЧ , цифры после букв - предел прочности при растяжении и испытании на изгиб. Высокопрочный чугун маркируется буквами ВЧ и цифрами, указывающими его прочностные свойства. Ковкий чугун маркируется буквами КЧ , первые две цифры после букв обозначают предел прочности при растяжении, следующие - относительное удлинение.  [c.128]

Прогибы вала. Прогиб вала ротора по любым причинам, кроме собственного веса, вызывает вибрацию оборотной частоты. Иногда вибрация оборотной частоты вызывается тепловой анизотропией ротора. Как известно, роторы и валы турбин изготовляют из поковок, которые в свою очередь получают ковкой отливок. Неравномерное затвердевание отливки в изложнице приводит к неравномерности по сечению отливки свойств материала, имеющий, однако, примерно осевую симметрию. Если при ковке вала окажется, что его ось сильно отклонится от оси отливки, то может появиться анизотропия (разные свойства по разным направлениям) коэффициента линейного расширения часть волокон, например, с одной стороны вала будет при нагревании расширяться больше остальных. Поэтому при пуске турбины даже с абсолютно уравновешенным ротором появится изгиб вала и  [c.510]

В коленчатом валу волокна должны изгибаться и идти соответственно его контуру (фиг. 52, а). Прежде коленчатые валы изготовляли не ковкой, а только механической обработкой, т. е. вырезали  [c.75]

Ковка инструментом, не содержащим элементов формы обрабатываемого изделия или содержащего их только частично. Кроме того, к свободной ковке относят также процессы деформации изгибом (гибка) и процессы пластической деформации сдвигом (рубка).  [c.460]

Верхняя траверса крана (см. рис. 171). Она представляет собой гнездо для подшипников и ее обычно изготовляют ковкой из стали Ст4 или Ст5. Для соединения с металлоконструкцией крана траверсу снабжают шипами или отверстиями для вставных шипов. Траверса работает на изгиб от сил Я и F с максимальными изгибающими моментами в среднем сечении, вызывающими напряжения  [c.465]

Детали из ковкого чугуна лучше выдерживают нагрузки на удар и изгиб, чем детали из обычного серого чугуна.  [c.6]

Rib — Ребро жесткости. (1) Длинное V-образное, закругленной формы углубление используемое для упрочнения больших листовых металлических панелей. (2) Длинная, обьмно тонкая выпуклость, используемая для обеспечения прочности на изгиб при ковке.  [c.1031]

Заготовки в виде поковок, изготовляемых ковкой, и штамповок, изготовляемых в штампах, применяются для деталей, работающих преимущественно на изгиб, растяжение, кручение и имеющих в разных своих частях значительную разницу в поперечных сечениях. При изготовлении поковок стремятся получить конфигурацию заготовки, ггриближающуюся к упрощенному очертанию детали.  [c.92]

Серый чугун. Содержит 3,2—3,5 % углерода, кремний, марганец, фосфор, серу. Предел прочности при изгибе серого чугуна составляет 200—450 МПа. Кривые намагничивания серого чугуна II ковкого чугуна, являющегося разновидностью серого, показаны на рис. 9-23. Серый чугун применяется для отливок корпусов электрических машин, крепежных деталей, плит и пр. Чугунные отливки, особенно больших размеров, не требуют дальнейшей термической обработки, однако е некоторых случаях огжиг изделия является полезным. Валы, вращающиеся детали быстроходных электрических машин, станины машин, подверженных вибрации и толчкам, не могут изготовляться из чугуна. Для указанных изделий необходима сталь, достаточно хорошо удовл1етво-ряющая повышенным требованиям в отношении механической прочности.  [c.290]

Изучали влияние кремния, вольфрама и ванадия (табл. 21) на прокаливаемость, склонность к перегреву, устойчивость против отпуска, технологичность при ковке и термической обработке и предел прочности при изгибе базовой стали 7бХ. В соответствии с вводимым легирующим элементом исследуемые стали разделены на три группы I — хромокремнистые II —хромовольфрамовые III —хромованадиевые. IV группу составляют стандартные стали 9Х и 9Х2СВФ.  [c.80]

Несмотря на нес солько пониженную способность к пластической деформации комплекснолегированной стали, трещины в прутках диаметром 15 и 8 мм как в процессе ковки, так и при механической обработке не были обнаружены. Сталь 75ХСМФ имеет повышенную устойчивость против перегрева и отпуска, трещиноустойчивость при термической обработке и наивысший предел прочности при изгибе.  [c.85]

Колонны и гайки. Колонны диаметром до 500-800 мм изготовляют в виде сплошных стержней. Колонны ббльшего сечения часто делают пустотелыми путём сверления осевого канала диаметром 150—300 мм, что обеспечивает в известной мере обнаружение внутренних пороков исходной поковки и позволяет использовать колонны для подвода жидкости к цилиндрам. Вместе с тем пустотелые колонны при равной со сплошными площади поперечного сечения имеют больший момент сопротивления изгибу. В колоннах весьма крупных прессов (10 000—20 000 т) внутреннее отверстие диаметром 350—700 мм может быть получено ковкой на оправке.  [c.459]


В указанных сталях высокий процент углерода и таких легирующих элементов, как хром, молибден, ванадий, вольфрам, поэтому после закалки обеспечивается максимально твердая мартенситная основа с включением карбидных частиц. Эти стали обладают малой склонностью к деформации в процессе термообработки, высокой прокаливаемостью и наследственной мелкозернистостью. Однако недостатком приведенных марок сталей является наличие в них карбидной неоднородности, которая предопределяется их химическим свойством и образуется. в процессе кристаллизации. Карбидную неоднородность можно снизить путем ковки, способствующей равномерному распределению по сечению и длине относительно мелких карбидов, что влияет на износостойкость и повышает прочность при изгибе и сжатии. По карбидной неоднородности наиболее приемлемыми являются стали 5ХНВ и 5ХНМ.  [c.158]

Серые чугуны маркируют следующим образом буквы СЧ сокращенно обозначают серый чугун, КЧ — ковкий чугун первое двузначное число — предел прочности при растяжении, второе двузначное число — предел прочности при изгибе. Например, СЧ 15-32 означает, что этот серый чугун имеет предел прочности при растяжении 15 кг1мм и предел прочности при изгибе 32 кг1мм .  [c.94]

Преимущество сваренных из дисков роторов —очень высокая теп ювая стабильность и практическое отсутствие теплового изгиба их при нагреве, что тчти невозможно получить для роторов тех же размеров д-угой конструкции. Эго является следствием составления ротора из многих дисков, каждый из которых был по-своему ориентирован при ковке относительно оси слитка, что почти исключает влияние несимметричности их свойств при нагреве.  [c.232]

Подробное исследование усталостных свойств литой стали при изгибе с вращением было проведено Ивэнсом, Эбертом и Бриггсом [159], результаты которого можно видеть на рис. 4.2. Было рассмотрено большое количество типов нелегированных и низколегированных стальных сплавов с содержанием углерода от 0,3 до 0,4%. Испытывались отожженные нормализованные и отпущенные или закаленные и отпущенные материалы. Из рисунка видно, что отношение предела выносливости при изгибе к пределу прочности при растяжении для гладкого образца равно приблизительно 0,46 — величина, составляющая около 80% от I того же отношения для соответствующей ковкой стали. Для образца, имеющего концентратор напряжений, указанное отношение для литой стали составляет около 0,29, т. е. отношение приблизительно такое же, как и для ковкой стали при наличии концентрации напряжений.  [c.94]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

Конструкция вала с полыми шейками более технологична при ковке и термической обработке. Бочкообразная форма отверстия шеек (рис. 4, в) более рациональна, так как повышает жесткость щек при одновременном увеличении диаметра полости, что приводит к дополнительному снижению напряжений. При этом прочность на изгиб повышается на 10—15%, а на кручение — на 25—30% по сравнению с прочностью вала с полыми небочкообразными шейками диаметром, равным диаметру отверстия в щеке.  [c.316]


Смотреть страницы где упоминается термин ИЗГИБ — КОВКА : [c.410]    [c.154]    [c.41]    [c.318]    [c.112]    [c.540]    [c.545]    [c.68]    [c.144]    [c.902]    [c.934]   
Краткий справочник металлиста (0) -- [ c.0 ]



ПОИСК



Ковка

Ч ковкий



© 2025 Mash-xxl.info Реклама на сайте