Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнении движения изотропного упругого тела упругой среды

Ультразвуковые измерения 92 Упругие постоянные 17, 178, 182 Упругий импульс в цилиндрическом стержне 73 Уравнение частот продольных колебаний цилиндрического стержня 61 Уравнении движения изотропного упругого тела 83 --упругой среды 18  [c.190]

В этой главе выведены уравнения движения изотропной упругой среды в перемещениях частиц и показано, что эти уравнения движения описывают два типа волн, которые могут распространяться в неограниченном упругом теле. Эти два типа волн названы волнами расширения и волнами искажения. Движение частицы в плоской волне расширения происходит в направлении распространения, тогда как в плоской волне искажения оно происходит в направлении, перпендикулярном направлению распространения.  [c.13]


В предыдущей главе были получены уравнения движения изотропной твердой среды (2.8), (2.9) и (2.20), выраженные через перемещения. Теоретически распространение волн напряжения в ограниченном изотропном твердом теле можно изучить, решая эти уравнения при определенных граничных условиях. Из рассмотрения отражения плоской упругой волны от плоскости раздела можно видеть, что при наличии нескольких свободных поверхностей задача не является столь простой и фактически, за исключением простейших случаев, точных ее решений не найдено.  [c.47]

Волновые уравнения в изотропной упругой среде были получены на основании рассмотрения волн, длина которых велика по сравнению с размерами тела, причем допускалось, что сечение тела во время движения остается плоским, а напряжение по плоскости распределяется равномерно.  [c.59]

Распространение упругих волн в анизотропной среде, т. е. в кристаллах, подчиняется более сложным закономерностям, чем распространение волн в изотропном теле. Для исследования таких волн надо обратиться к общим уравнениям движения  [c.130]

Определяющим для последующего развития теории упругости и всей механики сплошной среды явился континуальный подход Коши, разработанный им в 20-х годах. Однако еще раньше толчок для развития теории упругости и гидродинамики вязкой жидкости дали два мемуара Навье, представленные им Парижской академии наук в 1821 и в 1822 гг. В них Навье, следуя П. С. Лапласу и используя феноменологическую молекулярную модель среды, впервые вывел уравнения теории упругости изотропного тела (в смещениях) и уравнения движения несжимаемой вязкой жидкости (так называемые уравнения Навье — Стокса).  [c.48]

При выводе уравнений движения твердой среды (2.7) было отмечено, что эти уравнения справедливы при любых зависимостях между напряжением и деформацией. Волновые уравнения изотропного упругого тела были затем получены подстановкой из соответ-  [c.44]

В настоящее время рэлеевские волны в изотропных твердых телах изучены весьма основательно [7]. Очень важным моментом явилось обобщение рэлеевских волн на случай анизотропной среды. Рассмотрим здесь кратко схему расчета и основные соотношения, которые имеют место при распространении плоской гармонической рэлеевской волны вдоль свободной границы кристалла произвольной симметрии, занимающего полупространство Хз > 0. Как известно [3], для уравнения движения анизотропной однородной идеально упругой среды при отсутствии пьезоэффекта мы вместо (1.1) имеем более сложную форму  [c.16]


Уравнения движения. Понятия напряжения и деформации и терминология, установленная для изотропных твердых тел, применимы без изменений к анизотропным твердым телам так же, как и уравнения движения, выраженные через напряжения, согласно уравнению (2.3). Но изменяется связь между напряжениями и деформациями- Согласно закону Гука в его наиболее общей форме каждая компонента напряжения зависит линейно от каждой компоненты деформации, а константы пропорциональности интерпретируются как упругие константы. Для изотропной среды имеются только две независимые константы. В случае поперечно-изотропной среды закон Гука содержит пять независимых констант. Если для них использовать обозначения Лява, то связь напряжения и деформации запишется так  [c.46]

В теории свободных колебаний упругого твердого тела приходится интегрировать. уравнения колебательного движения при заданных граничных условиях, относящихся к напряжениям и смещениям. Пуассон зб) дал решение проблемы свободных радиальных колебаний упругой сферы, а Клебш по образцу решения Пуассона, построил общую теорию. В эту теорию входит обобщение понятия нормальных координат на случай системы с бесконечно большим числом степеней свободы, введение соответствующих фундаментальных функций и доказательство тех свойств этих функций, с которыми приходится иметь дело при разложении любой заданной фуккции по этим функциям. Спор по вопросу о колебаниях струн, стержней, мембран и пластинок, который происходил как до Пуассона так и при нем, подготовил почву для обобщений Клебша. До появления трактата Клебша Ламе ) предложил другую теорию. Будучи знаком с исследованиями Пуассона о двух типах волн, ои пришел к заключению, что колебания всякого упругого тела должны распадаться на два соответствующих класса в согласии С,этим предположением он исследовал колебания различных тел. То обстоятельство, что его решения не удовлетворяли граничным условиям ля тел, поверхность которых свободна от напряжений, в достаточной мере компрометирует его теорию однако она была окончательно оставлена только после того, как все виды свободных колебаний однородной изотропной среди были изучены, и было доказано, что классы, на которые они распадаются, не соответствуют  [c.30]

Введение. Решение уравнений свободных колебаний тела данной формы может быть, после разрешения уразнения частоты и опредгления нормальных функций, выбрано таким образом, чтобы былн удовлетворены любые начальные условия. Если, однако, изучать таким образом движение, которое возникает в результате мест юго возмущения, имевшего место внутри такого тела, все или некоторый части Границы которого значительно удалены от места первоначального возмущения, то получающиеся выводы с трудом поддаются истолкованию. В начале движения части тела близи границы не подвергаются йозмущению, и движение происходит так, как если бы тело было неограничено. В соответствии с этим мы рассмотрим такие малые, двнзкения й упругой твердой среде, бесконечной по всем (илн по некоторым) направлениям, которые в некоторый начальный период ограничены лишь конечной областью, в то время как остальные части среды остаются в покое и свободны от напряжений. Мы начнем со случая изотропной среды.  [c.306]


Смотреть страницы где упоминается термин Уравнении движения изотропного упругого тела упругой среды : [c.265]    [c.10]   
Волны напряжения в твердых телах (1955) -- [ c.18 ]



ПОИСК



Изотропная среда, уравнение

Изотропность

Изотропность среды

Среда изотропная

Среда упругая

Тело изотропное,

Упругие тела

Упругость среды

Уравнении движения изотропного упругого тела

Уравнения Уравнения упругости

Уравнения движения (упругого тела)

Уравнения движения упругой среды

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте