Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рентгеновские лучи сплошного спектра

Рентгеновская трубка. Рентгеновские лучи сплошного спектра.  [c.158]

Как показывают опытные данные, рентгеновские лучи сплошного спектра возникают при энергиях электронов, не превышающих некоторой критической величины (обычно при напряжениях на трубке до 20—30 кВ), характерной для данного материала антикатода. Рентгеновские лучи сплошного спектра имеют резкую границу со стороны коротких длин волн, называемую коротковолновой границей сплошного спектра.  [c.158]


Облучение рентгеновскими лучами (сплошной спектр,  [c.97]

РЕНТГЕНОВСКИЕ ЛУЧИ СПЛОШНОГО И ДИСКРЕТНОГО СПЕКТРА  [c.156]

Рентгеновские лучи дискретного спектра. В случае, когда энергия электрона достигает некоторого критического значения, характерного для материала антикатода, или превышает его, на фоне сплошного спектра возникают интенсивные максимумы с дискретными значениями энергии. Поскольку рентгеновские лучи такого рода зависят от материала антикатода, то они обычно называются характеристическими рентгеновскими лучами. Характеристические рентгеновские лучи обладают отличительными свойствами.  [c.159]

Важнейшее применение рентгеновской спектрографии — исследования с помощью рентгеновских лучей структуры кристаллов (а в последнее время и молекул) и определение параметров кристаЛ лической решетки. В тех случаях, когда мы располагаем монокристаллами достаточных размеров, можно применить для таких рентгеноструктурных исследований метод Лауэ (см. 117), используя рентгеновское излучение со сплошным спектром.  [c.411]

Методы, указанные в предыдущем параграфе, позволяют исследовать характер спектра рентгеновского импульса даже в том случае, когда импульс является белым , т. е. дает сплошной спектр. Такой характер имеет спектр рентгеновских лучей, получающихся в обычных условиях в рентгеновской трубке при торможении электронов ударами об анод. Изменение скорости электрона происходит при этом случайным путем, и образующееся излучение представляет совершенно неправильный импульс, эквивалентный совокупности разнообразных, длин волн. Однако наряду с такими импульсами появляется и гораздо более монохроматическое излучение. При бомбардировке анода электронами определенной скорости наблюдается следующее явление при некоторой их скорости, величина которой определяется веществом анода, последний становится источником  [c.412]

Съемка неподвижного кристалла в полихроматическом излучении (сплошной спектр или спектр торможения рентгеновских лучей) — метод Лауэ. Регистрация обычно производится на плоскую пленку, которую располагают после образца и на которой регистрируются рефлексы, соответствующие небольшим вульф-брэгговским углам (9 <45°). Вариантом данного метода является обратная съемка (метод эпиграмм), когда пленку располагают между рентгеновской трубкой и образцом и на ней регистрируются рефлексы, соответствующие вульф-брэгговским углам 0>45°. Метод не-  [c.113]


Аппаратура. Давно известно, что при облучении образца электронным пучком возникает рентгеновское излучение на фон сплошного спектра рентгеновских лучей накладываются линии, являю щ иеся характеристическими для элементов, входяш их в состав образца. Идентифицируя эти линии эмиссионного спектра, можно определить присутствующие элементы, а измерения интенсивности выбранных линий могут использоваться для очень точного количественного анализа при сравнении с таковыми для эталонных образцов.  [c.391]

На рис. 2.4 показана схема камеры Лауэ. Источник рентгеновских лучей испускает излучение, имеющее сплошной спектр, с длинами волн, например, от 0,2 А до 2 А. Система диафрагм позволяет получить хорошо коллимированный пучок. Размеры монокристаллического образца могут не превышать 1 мм. Плоская рентгеновская пленка располагается так, что на нее попадают либо проходящие (прямая съемка, положение А на рис. 2.4), либо отраженные (обратная съемка, положение В на рис. 2.4) дифрагированные пучки. Дифракционная картина состоит из серии пятен (рефлексов) на рис. 2.5 показана такая дифракционная картина для кремния.  [c.66]

Хотя изложение основ рентгеноструктурного анализа не является задачей этой книги, упомянем здесь об интерференционном методе исследования кристаллов, в котором используют дискретные рентгеновские спектры характеристические лучи) — резкие пики, появляющиеся на сплошном фоне рентгеновского излучения при больших ускоряющих потенциалах. Кристаллографическими исследованиями было установлено, что в любом кристалле можно обнаружить определенные плоскости, в которых атомы или ионы, составляющие его решетку, упакованы наиболее плотно. Такие плоскости отражают монохроматическое рентгеновское излучение, и, следовательно, может происходить интерференция волн, отраженных различными плоскостями. Очевидно, что усиление отраженной волны произойдет лишь под вполне определенным углом 0 (рис. 6.78). Если разность хода (А = АО + ОВ) равна целому числу длин волн, то  [c.351]

И антикатодом сообщает большую скорость термоэлектронам. Быстрые электроны, попадая на антикатод, испытывают на нем резкое торможение, в результате чего и возникает тормозное излучение — электромагн1шюе излучение короткой длины волны. Полученные таким образом рентгеновские лучи обладают, подобно белому свету, сплошным спектром и поэтому называются белым рентгеновским излучением. Белое излучение по известным причинам называется также тормозным.  [c.158]

Известно, что оптический спектр изолированргого атома состоит из отдельных линий. При образовании молекулы оптический спектр усложняется — возникает полосатый спектр. При переходе вещества в твердое состояние изменяется характер спектра он может стать сплошным. В отличие от этого линейчатый рентгеновский спектр атома не изменяется он не зависит от того, к какому веществу относится. По-видимому, характеристические рентгеновские лучи порождаются не слабо связанными с ядром валентными (оптическими) электронами, а электронами, расположенными близко к ядру.  [c.159]

В явлениях фосфоресценции также соблюдается правило Стокса. Очень многие вещества фосфоресцируют видимым светом под действием ультрафиолетовых и рентгеновских лучей. Этим пользуются для удобного исследования невидимой коротковолновой радиации, и фосфоресцирующие экраны имеют очень широкое распространение. Вместе с тем явление фосфоресценции можно использовать и для изучения инфракрасной части спектра. Опыт показывает, что фосфоресценция гасится под действием инфракрасного излучения. Спроектируем на фосфоресцирующий экран (предварительно возбужденный) сплошной спектр, Через некоторое время фосфоресцен-  [c.765]

Объясните происхождение анодного сплошного эмиссионнога спектра рентгеновских лучей.  [c.365]

Кроме белого рентгеновского излучения, которое возникает при любых малых скоростях движения электронов и на любых анодах, каждый химический элемент, применённый в качестве анода, испускает свой собственный характеристический рентгеновский спектр, накладывающийся на спектр торможения. Характеристический спектр в отличие от спектра торможения является не сплошным, а состоящим из нескольких серий волн с характерными для каждого данного элемента длинами волн и минимальными напряжениями возбуждения (в кв), при которых эти характеристические рентгеновы лучи возникают. На суммарной спектральной кривой длины волн характеристического спектра отличаются резкими максимумами интенсивности.  [c.154]



Смотреть страницы где упоминается термин Рентгеновские лучи сплошного спектра : [c.158]    [c.156]    [c.156]    [c.51]    [c.385]    [c.387]    [c.156]    [c.249]   
Оптика (1977) -- [ c.158 , c.159 ]



ПОИСК



Рентгеновские лучи

Рентгеновские лучи сплошного и дискретного спектра

Спектр рентгеновский сплошной

Спектр рентгеновских лучей

Спектр сплошной

Спектры рентгеновские

Сплошной рентгеновский спектр. Понятие о характеристических лучах

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте