Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Капиллярный Объекты

Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой по ГОСТ 21105—75 чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.  [c.146]

Все методы капиллярного неразрушающего контроля по характеру взаимодействия проникающих пенетрантов с объектом контроля согласно ГОСТ 18353—79 рассматриваются как молекулярные, что не указывается в определениях для сокращения.  [c.146]


Комбинированные капиллярные методы контроля подразделяют в зависимости от характера физических полей (излучений) и особенностей их взаимодействия с контролируемым объектом.  [c.147]

Жидкостный капиллярно-радиационный метод излучения основан на регистрации ионизирующего излучения соответствующего пенетранта в поверхностных и сквозных несплошностях, а капиллярно-радиационный метод поглощения — на регистрации поглощения ионизирующего излучения соответствующим пенетрантом в поверхностных и сквозных несплошностях объекта контроля.  [c.147]

Капиллярный дефектоскопический материал применяют при капиллярном неразрушающем контроле и используют для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатков с целью получения первичной информации о наличии несплошности в объекте контроля.  [c.147]

Объекты, прошедшие капиллярный контроль, следует подвергать антикоррозионной защите в соответствии с требованиями ГОСТ 9.028—74.  [c.169]

Воспроизводимость результатов капиллярного неразрушающего контроля вычисляют, пользуясь методом двукратных совпадений, как процентное отношение доверительного интервала количества следов однотипных несплошностей, выявленных по их заданному оптическому и (или) геометрическому параметру испытуемым методом (материалами), к количеству следов, выявленных образцовым методом (материалами) на группе объектов, например, лопаток турбин с однотипными многочисленными несплошностями (трещинами, парами и т. п.).  [c.171]

Система оптико-электронного сканирования для магнитно-люминесцентного и люминесцентного контроля (Англия). В капиллярной дефектоскопии механизированные полуавтоматические линии действуют уже более 20 лет, Основной источник низкой надежности контроля — визуальный осмотр объектов контроля. Прежние попытки автоматизировать осмотр были неудачными из-за влияния фона и невозможности учета общей визуальной информации об объекте контроля. Данная система не только фиксирует, но интерпретирует индикаторные следы дефектов по размерам, форме и положению, принимая решение о годности объекта.  [c.180]

Капиллярные методы контроля предназначены для обнаружения поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности и ориентации. Капиллярные методы позволяют контролировать объекты любых форм и размеров, изготовленных из черных, цветных металлов и других неферромагнитных материалов. Их применяют и для контроля деталей из ферромагнитных материалов, если их магнитные свойства, форма, вид и расположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или если этот метод нельзя применять по условиям эксплуатации.  [c.35]


Задача в этом случае может быть решена классическим методом построения функций Грина для трехмерного уравнения Лапласа, но вследствие малости поперечных размеров капиллярной трубки по сравнению с длиной и высокой проводимости металла можно считать окружность поперечного сечения трубки эквипотенциальной с достаточной точностью в пределах разрешающей способности приборов. Поэтому целесообразно сразу принять допущение о цилиндрической симметрии объекта и решать задачу более просто с построением соответствующего интегро-диффе-ренциального уравнения.  [c.195]

Индикаторные пенетранты могут заполнять полости неплотностей следующими способами капиллярным, вакуумным, компрессионным, ультразвуковым, вибрационным. При этом возможно либо самопроизвольное заполнение полости, либо интенсификация пропитки путем вакуумирования объектов контроля, воздействия повышенного давления, наложения колебаний ультразвуковой и звуковой частоты.  [c.112]

Капиллярный неразрушающий контроль основан на проникновении жидких веществ в капилляры на поверхности объекта контроля с целью выявления дефектов. В качестве проникающих в полость дефектов индикаторных жидкостей применяют органические люминофоры, ярко светящиеся под действием ультрафиолетовых лучей вещества, а также различные красители.  [c.113]

Равновесное состояние системы конечных размеров определяется (при пост, объёме) минимумом суммарной свободной энергии, в к-рую вносит вклад как объём, так и П., причём относительный вклад П. изменяется обратно пропорц, размеру объекта. Уменьшение поверхностной свободной энергии, происходящее за счёт тех или иных изменений П. (сокращения её площади, понижения энергии в результате насыщения свободных связей поверхностных атомов и молекул и т. д.), служит движущей силон таких поверхностных явлений, как адсорбция, смачивание, растекание, адгезия и когезия, коагуляция акустическая, образование капель, капиллярные явления и др. Эти явления находят практич. ирименение в разнообразных технологиях. Напр., ис-  [c.654]

Как первое, так и второе уравнение капиллярности получены исходя из того, что равновесие материального объекта определяется равновесием приложенных к нему сил.  [c.19]

Испытываемый на натекание объект (целиком или какая-то его часть) помещается на некоторое время в раствор люминофора. Если в погруженном объекте имеется течь, раствор люминофора, просачиваясь под действием капиллярных сил через трещину, накапливается на противоположной стенке, где по мере испарения растворителя накапливается подсохший люминофор. Если затем испытываемый объект облучить ультрафиолетовыми лучами (ртутно-кварцевой лампой с черным фильтром), то светящийся люминофор укажет на место нахождения течи. Для лучшего наблюдения за светящейся точкой удобно пользоваться лупой для увеличения видимой поверхности светящейся точки. Если выдерживать обследуемый объект в люминофорном растворе несколь- ко часов, то люминесцентным методом можно достичь чувствительности 10 —IQ- Па-м /с, а при выдержке в несколько суток чувствительность увеличивается еще на порядок.  [c.390]

Капиллярные методы применимы для контроля ферро- и неферромагнитных объектов, но чаще служат для контроля последних, так как для дефектоскопии ферромагнитных изделий обычно используют магнитные методы.  [c.386]

Капиллярные методы неразрушающего контроля широко используют в процессе технической диагностики различных видов нефтегазового оборудования например, для выявления поверхностных дефектов корпусов вертлюгов, щек талевых блоков, буровых крюков и др. Контроль проводят по следующим этапам подготовка поверхности объекта к контролю, обработка дефектоскопическими материалами, осмотр и выявление дефектов, окончательная очистка контролируемой поверхности.  [c.72]

Методика капиллярной дефектоскопии контролируемого объекта (за-готовки, детали, изделия) состоит из следующих последовательно выполняемых операций  [c.546]

Справедливость требует отметить, что бурное развитие математических исследований в области плоских задач установившегося движения грунтовых вод в течение четверти века было обусловлено не только (а может быть, и не столько) актуальностью соответствующих практических задач, но также изяществом аппарата теории аналитических функций и соблазнительной возможностью получения строгих аналитических решений для многих задач. Вопрос о приложимости ряда таких решений к реальным объектам остается открытым в силу того, что на самом деле обычно неизвестны точные гидрогеологические условия подземных горизонтов, не учитываются процессы в капиллярной кайме, грунты неоднородны и не выполняются сильно схематизированные расчетах краевые условия математических задач.  [c.608]


АЭ-метод выступает как самостоятельный, если по его оценке, полученной на основании критериального анализа зарегистрированной АЭ-информации от источников-де(()ектов, состояние объекта признается удовлетворительным. В противном случае для окончательной оценки привлекаются дополнительные методы НК. Наибольшую надежность оценки дает применение АЭ-метода в комплексе с такими т )адици-онными методами, как визуально-оптический, капиллярный, магнитопорошковый, ультразвуковой, рентгеновский. Эффективность комплексного контроля в этом случае определяется тем, что в задачу АЭ-метода входит выявление АЭ-активных источников и определение их координат или зон их расположения, обеспечивающих многократную минимизацию объемов последующего контроля традиционными методами. Последние дополняют предварительную АЭ-оценку состояния объекта сведениями о геоме фических параметрах и степени опасности выявленных дефектов (размерах, форме, ориентации и глубине залегания).  [c.264]

Капиллярные методы неразрушающего контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплош-ностей материала объектов контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.  [c.146]

Капиллярный НК предназначен для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности (для дефектов типа трещин) и ориентации по поверхности. Этот вид контроля позволяет диагностировать объекты любых размеров и форы, изготовленные из черных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твердых неферромагнитных материалов.  [c.146]

Необходимым условием выявления дефектов нарушения сплошности материала типа полостных капиллярным контролем, имеющих выход на поверхность объекта и глубину распространения, значительно превышающую ширину их раскрытия, является относительная их незагрязненность посторонними веществами.  [c.146]

Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на люминесцентный, основанный на регис рации контраста люминесци-рующого в длинноволновом ультрафиолетовом излучении видимого индикаюрного рисунка на фоне поверхности объекта контроля, цветной, основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля  [c.147]

Капиллярно-электронндуктивный метод основан на электроиндуктивном обнаружении электропроводящего индикаторного пенетранта в поверхностных и сквозных несплошностях неэлектропроводящего объекта,  [c.147]

Капиллярно-магнитопорошковый метод осноран на обнаружении комплексного индикаторного рисунка, образованного пенетрантом и ферромагнитным порошком, при контроле намагниченного объекта.  [c.147]

Очиститель от пенетранта (очиститель) М — капиллярный дефектоскопический материал, иредназначеиный для удаления индикаторного пенетранта с поверхности объекта контроля самостоятельно или в сочетании с органическим растворителем или водой.  [c.148]

Гаситель пенетранта (гаситель) Г — капиллярный дефектоскопический материал, предназначенный для гаше- ния люминесценции или цвета остатков соответствующих индикаторных пе-нетрантов на поверхности объекта контроля.  [c.148]

Капиллярный метод дефектоскопии позволяет обнаружить микроскопи-lie Kne поверхностные дефекты на изделиях практически из любых конструкционных материалов. Разнообразие дефектоскопируемых изделий и различные требования к их надежности требуют дефектоскопических средств различной чувствительности. В настоящее время разработан значительный ассортимент материалов, применяемых при капиллярном неразрушающем контроле и предназначенных для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатков с целью получения первичной информации о наличии несплошности в объекте контроля. Они широко используются предприятиями различных отраслей промышленности.  [c.151]

Устройство подготовки объектов к капиллярному ыеразрушающему контролю предназначается для очистки контролируемой поверхности и Полостей несплошностей объекта контроля перед применением пенет-]эанта.  [c.160]

Фон поверхности — бездефектная поверхность объекта контроля, обработанная дефектоскопическими материалами, Дифференциальная чувствительность средства капиллярного НК — отношение изменения оптического и (или) геометрического параметра индикаторного следа к вызывающему его изменению раскрытия при неизменной глубине и длине несплош-иости типа единичной трещины.  [c.170]

Наряду с терминами порог чувствительности капиллярного неразрушающего контроля , класс чувствительности капиллярного неразрушающего контроля и дифференциальная чувствительность средства капиллярного неразрушающего контроля в массовом контроле однотипных объектов, например, лопаток турбин и компрессоров находят применение термины воспроизводимость результатов капиллярного неразрушающего контроля и сходимость результатов капиллярного неразрушающего контроля . Основаны они на статистических методах оценки массового контроля, например, методе двукратных совпадений, позволяющем сравнительно быстро и с малыми затратами оценить как полноту, так и стабильность выявления многочисленных поверхностных несплошно-стей испытуемым процессом контроля или материалом по сравнению с образцовыми.  [c.171]

Прибор МД-41К применяют при контроле зубчатых колес главных судовых редукторов. Объекты контроля представляют собой двухступенчатые зубчатые передачи, два ведущих вала которых получают вращение от турбин, а ведомый вал соединен с гребным [ ИНТОМ. Колеса имеют шевронные зубья с модулем 4,5—8,0 мм. В процессе эксплуатации прибора обнаружены усталостныс трещины различней глубины и протяженности. Для подтверждения результатов контроля применяют магнитопорошковую и капиллярную дефектоскопию, визуальный осмотр, а в отдельных случаях и дефектный участок зуба удаляют. Контроль проводится непосредственно на судне через смотровые люки верхних крышек редукторов. Возможно осуществлять контроль и в период стоянки судна под грузовыми операциями или на закрытом рейде. Какой-либо специальной технологической подготовки редуктора, кроме последовательного вскрытия смотровых люков на его крышках и работы валооборотной машины в процессе контроля, не тре-буется.  [c.182]


Капиллярны йметод основан на регистрации индикаторной жидкости, проходящей через сквозные дефекты под действием капиллярных сил при отсутствии перепада давления на стенке объекта.  [c.26]

Вибрация, возникающая при работе машин различных типов и оборудования, влияет не только на технические объекты, но и на людей, находящихся вблизи источника вибрации или в непосредственном контакте с ним. Длительное воздействие вибрации нарушает нормальное состояние человека, непосредственно влияет на производительность труда II качество выполняемой работы. Различают вредные нарушения физио-югического и функционального состояния человека-оператора, вызываемые вибрацией. Стойкие вредные физиологические изменения называются вибрационной бо.1езнью. К симптомам вибрационной болезни относятся головная боль, онемение пальцев рук, боли в кистях и предплечье, возникновение судорог, смещение порогов болевой чувствительности, повышение чувствительности к охлаждению, появление бессоницы. При вибрационной болезни возникают патологические изменения спинного мозга, сердечно-сосудистой системы, костных тканей и суставов, изменяется капиллярное кровообращение. Функциональные нарушения, связанные с действием вибрации на человека-оператора, могут выражаться в ухудшении зрения, изменении реаюши вестибулярного аппарата (нарушение координации движений возникновение галлюцинаций, относящихся к ориентации тела и т. п.), а также в более быстрой утохшяемостп.  [c.23]

Дефектоскопы, использующие проникающие вещества для неразрушающего контроля, классифицируют по типу проникающей в дефект жидкости (пенетранта) и способу регистрации индикаторного рисунка этого дефекта. Различают три основных метода капиллярной дефектоскопии цветной, люминесцентный и люминесцент-но-цветной. При цветной дефектоскопии применяют проникающие жидкости, которые после нанесения проявителя образуют красный индикаторный рисунок дефекта, хорошо видимый на белом фоне проявителя. Люминесцентная дефектоскопия основана на свойстве проникающей жидкости люминесцировать под воздействием ультрафиолетовых лучей. При люминесцентно-цветной дефектоскопии индикаторные рисунки не только люминесцируют в ультрафиолетовых лучах, но и имеют окраску. Основными объектами капиллярной дефектоскопии являются изделия из неферромагнитных конструкционных материалов лопатки турбин, детали корпусов энергооборудования, сварные швы, а также изделия из диэлектрических материалов, например из керамики. В настоящее время наиболее широко применяется следующая дефектоскопическая аппаратура люминесцентные дефектоскопы ЛДА-3 и ЛД-4, ультрафиолетовые установки КД-20Л и КД-21Л, установка контроля лопаток УКЛ-1, стационарная люминесцентная дефектоскопическая установка Де-фектолюмоскоп СЛДУ-М и др.  [c.377]

Все методы капиллярного контроля основаны на затекании проникающей жидкости в полости дефектов и адсорбировании или диффузии жидкости из дефекта. При этом наблюдается разница в цвете или свечении между фоном (цветом или свечением) всей поверхности объекта и участком поверхности над дефектом. Чем больше эта разница, тем выше чувствительность метода и тем меньший дефект может быть обнаружен.  [c.81]

Проведение обучения, аттестация и проверка знаний специалистов неразрушающего контроля I и II уровней квалификации по магнитному, акустическому (ультразвуковому), радиографическому, капиллярному, визуально- измерительному, акустической эмиссии, стилоскопированию, токовихревому видам контроля объектов котлонадзора, подъемных сооружений, подземных и наружных газопроводов, магистральных нефтепродукто-проводов, машин и аппаратов и технологических трубопроводов, потенциально опасных производств химической, нефтегазоперерабатывающей промышленности, оборудования шахтных установок.  [c.221]

Результаты исследований представлены на рис. 5,3. Как показано на графике, слой, обращенный к газам, содержит 28—29 % Н2504, а на глубине 0,25 см кислота практически не обнаруживается. При оценке и распространении результатов промышленных испытаний на другие объекты необходимо учитывать, что экспериментальная стенка находилась в газоходе с разрежением около 0,02 МПа и фильтрация через нее воздуха препятствовала встречным процессам капиллярного переноса и молекулярной диффузии.  [c.220]

Находит применение капиллярно-лучево11 вариант в 1з -альных методов [18], предназначенный для выявления дефектов в таких легких материалах, как грубозернистый графит, бериллий или окислы бериллия. Объекты подвергают капиллярной пропитке абсорбирующими мягкие рентгеновские лучи жидкостями, а зате.м рентгенографируют. Абсорбционные лучевые добавки применяют также для уточнения размеров дефектов без разрушения образца из легких материалов.  [c.495]


Смотреть страницы где упоминается термин Капиллярный Объекты : [c.200]    [c.219]    [c.292]    [c.150]    [c.48]    [c.155]    [c.337]    [c.90]    [c.554]    [c.74]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.123 , c.125 ]



ПОИСК



4i ело капиллярное

Капиллярность



© 2025 Mash-xxl.info Реклама на сайте