Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая неустойчивость при растяжении

Итак, при помощи классического подхода мы выполнили анализ устойчивости пластической деформации при растяжении и вывели новый критерий перехода металла к неустойчивой фазе своего развития а (0 > 0 а"(0 > 0.  [c.218]

Пластическая неустойчивость и условия ее появления были детально исследованы в работах [161, 192]. Мы лишь выведем простые критерии неустойчивости при растяжении и сдвиге и проанализируем приводящие к ней физические условия.  [c.48]


При выполнении условия (3.4) со знаком равенства нагрузка Р достигает максимального значения и происходит спонтанное удлинение стержня. В этом смысле его равновесие неустойчиво, и если речь идет о некотором элементе конструкции, то его несущая способность исчерпана. Но для технологических процессов характерно, что обычно заданы не нагрузки на заготовку, а кинематика пластического деформирования. Технологические машины за редким исключением способны работать как при возрастающей, так и при понижающейся нагрузке. В связи с этим при исследовании технологических процессов интересуются не пластической неустойчивостью, выражающейся в том, что малое изменение нагрузки вызывает большое изменение деформации, а неустойчивостью, приводящей к недопустимому изменению геометрической формы заготовки (например, если прямой при устойчивом деформировании стержень после потери устойчивости становится кривым если у растягиваемого листа появляется локальное утонение и т. д.). В дальнейшем рассматривается локализация пластической деформации. В связи с этим важно выяснить, насколько надежно предсказывает рассматриваемые критерии неустойчивость именно этого типа. Проведенный анализ растяжения стержня имеет для нас смысл, лишь поскольку согласно наблюдениям в этом случае оба типа неустойчивости оказываются совмещенными. Объясняется это следующим.  [c.106]

Андреев Л. С. О неустойчивости пластического деформирования при двухосном растяжении.— Известия высших учебных заведений. Машиностроение , 1965, № 1, с. 51—57.  [c.170]

Здесь функция /(о) определяется кривой мгновенного растяжения при заданной температуре. Вследствие уменьшения сечения стержня при ползучести изображающая точка на диаграмме растяжения с течением времени движется по кривой вверх (хотя нагрузка остается постоянной). Можно ожидать поэтому, что при некотором значении напряжения возникнет состояние пластической неустойчивости аналогично тому, как это имеет место при обыч- 64  [c.64]

Неустойчивость равновесия при растяжении компактных ) образцов на пределе текучести. Предположим, что в круглом стальном образце небольшая область имеет предел текучести более низкий, чем соседние части. Если бы эта область занимала свободное положение в пространстве, то при достижении предела текучести в ней появились бы пластические деформации растяжения порядка нескольких процентов в направлении действия растягивающих напряжений и деформации сжатия во всех поперечных направлениях, составляющие половину деформаций растяжения.  [c.346]


Неустойчивость равновесия при растяжении плоских образцов. Разрушение по наклонным плоскостям. Несмотря на то, что характер возникновения пластических деформаций в плоских  [c.359]

До точки, соответствующей пределу прочности при статической нагрузке, истинная диаграмма растяжения е ст = / (5) и обычная диаграмма растяжения 8 = / (сг) мало отличаются одна от другой, так как более значительная разница в величинах относительного удлинения наблюдается только после начала образования шейки на образце, соответствующего достижению состояния неустойчивости пластической деформации при напряжении, равном условному пределу прочности.  [c.189]

При оценке результатов опытов по исследованию предельного сопротивления пластичных материалов необходимо иметь в виду, что предел несущей способности образцов в виде растянутых стержней и тонкостенных трубок, подвергающихся в различных сочетаниях действию осевой растягивающей силы, крутящего момента, внутреннего, а иногда и внешнего давления, исчерпывается во многих случаях не в связи с собственно разрушением, т. е. трещинообразованием, а в связи с возникновением неустойчивости равномерного деформирования. Потеря устойчивости приводит к локализации пластических деформаций в виде шейки, наблюдаемой в обычных опытах на растяжение образцов пластичных материалов, или в виде местного вздутия в стенке трубки. Местные пластические деформации развиваются некоторое время без разрушений при снижающихся нагрузках, как это видно, например, из диаграммы растяжения образца в разрывной машине с ограниченной скоростью смещения захватов, а уже затем в зоне наиболее интенсивных деформаций возникает трещина.  [c.12]

Испытания на растяжение образцов различных размеров с одним и тем же коэффициентом концентрации напряжения а - 10 позволяют оценить влияние масштабного фактора (см. рис. 198, а). В области А наблюдается вязкое разрушение образцов малых размеров при напряжении, превышающем предел прочности материала. С понижением температуры это превышение разрушающего напряжения над пределом прочности становится более заметным благодаря уменьшению бокового сужения образца. В области В прочность образцов понижена из-за влияния абсолютных размеров образца при наличии концентрации напряжения. Состояние неустойчивости пластической деформации у дна надреза достигается прежде, чем успевает развиться значительная пластическая деформация образца в целом, и прежде, чем произойдет слияние трещин малых размеров в объеме материала. Трещина рас-370  [c.370]

Вспомним основные стадии деформации стального образца при его растяжении в испытательной машине вначале это упругая деформация, затем равномерно распределенное по длине образца пластическое течение, затем - образование шейки и, наконец, разрыв в результате быстрого распространения поперечной трещины. Переход от одной стадии к другой сопровождается все большей локализацией деформаций. Так, упругая деформация равномерно распределена по объему (измеренные относительные удлинения и сдвиги не меняются при уменьшении базы измерения - элементов тела - вплоть до размеров, близких к межатомным расстояниям), пластическое течение равномерно охватывает образец в целом, однако при более пристальном рассмотрении оказывается, что оно в основном сосредоточено на удаленных друг от друга плоскостях скольжения. Образование шейки происходит в локальной области - на малом участке по длине образца, а трещина представляет собой предельную локализацию бесконечная деформация - разрыв сплошности - сосредоточена на одной вновь образованной поверхности, разделяющей образец на две части. Смена стадий происходит в результате того, что дальнейшее развитие данной стадии становится неустойчивым и оно подавляется последующей.  [c.13]


Помимо перечисленных, так называемых внешних факторов, существует большое число факторов, отражающих реакцию материала на возникшие состояния и протекающие процессы, т. е. то, что принято называть свойствами материалов в широком смысле этого понятия. Свойства материалов и элементов конструкции, в которых они физически воплощены, крайне многообразны а) упругость, характеризуемая модулем упругости Е, и пластическая деформируемость, описываемая диаграммой о = / (е) б) прочность, выражаемая при однократном нагружении пределом текучести, временным сопротивлением, истинным разрушающим напряжением в) пластичность в виде относительного удлинения и поперечного сужения г) упрочняемость материала и пластическая неустойчивость при растяжении д) упругая неустойчивость при сжатии е) сопротивляемость накоплению усталостных повреждений, в том числе у острия трещины ж) прочность при повторных пластических нагружениях з) сопротивление ползучести и) длительная прочность и пластичность при высоких температурах к) старение металла под воздействием деформации, температуры, времеии л) сопротивление началу разрушения в присутствии концентраторов — надрезов, трещин м) сопротивление быстрому динамическому распространению трещин н) стойкость против общей межкристаллитной коррозии, а также против коррозионного растрескивания о) сопротивление замедленным разрушениям п) хладостойкость и др.  [c.256]

При растяжении в образце одновременно происходят процессы упрочнения (деформационное) и разупрочнения (уменьшение площади поперечного сечения). Переход с равномерного характера деформирования на локализованный связан с явлением неустойчивости пластической деформации (шейкообразование). До образования шейки превалируют процессы деформационного упрочнения. Локализованная деформация характеризуется интенсивным снижением поперечного сечения и усилия деформации.  [c.283]

Деформационное упрочнение металлов обусловливается сложными коллективными процессами, включающими формирование диссипативных структур в виде пространственно-неоднородных стационарных состояний. Образование ячеистой структуры как первой из структур неустойчивого пластического течения характерно для ПД в диапазоне низких и умеренных температур (Т/Т = 0,1 0,07) [139, 195—197]. С технологической точки зрения, для получения достаточно пластичных сплавов среди прочих факторов благоприятна ячеистая дислокационная структура [168]. Так, в экспериментах "in situ" при растяжении тонкой бериллиевой фольги [197] наблюдали, что продвижение трещины происходит за счет образования микронор по границам ячеек. Притяжение дислокаций, составляющих стенки ячеек, к поверхности трещины существенно уменьшает энергию системы и затрудняет продвижение трещины.  [c.111]

Внимание к феномену неустойчивости пластического деформирования было привлечено явлением образования шейки при растяжении стержня [29]. Основываясь на многочисленных наблюдениях, показавших, что при отсутствии ползучести шейка у растягиваемого стержня появляется при максимальной нагрузке, Г. Закс и Д. Лубан предположили, что и в более общем случае пластическое деформирование становится неустойчивым при достижении одной из нагрузок экстремального значения. Согласно этому критерию пластическое деформирование устойчиво, если положительны добавочные нагрузки  [c.104]

Порча изделий из пластических масс, вызываемая плесневыми грибами, обычно не так велика и интенсивна, как изделий из органических природных материалов. В некоторых случаях, особенно при использовании неустойчивых примесей, развитие плесеней бывает обильным и вызывает изменения свойств пластических масс. С начала роста плесени ее влияние на субстрат зависит от окружающей влажности. Росту культуры плесени способствуют конденсации водяных паров и скопление влаги на поверхности материала. Некоторые пластические массы уже под влиянием повышенного влагосодержания значительно изменяют свои свойства. К этому добавляется химическая коррозия пластиков, вызываемая продуктами обмена веществ илесневых грибов и приводящая, например, к снижению у материала предела прочности при растяжении, гибкости и т. д. Благодаря свойственной пластическим массам проводимости микробный налет повышает электропроводность материала и уменьшает сопротивление его действию ползучих электрических токов. Это наблюдается даже в тех случаях, когда плесень заметна еще только под микроскопом. Колонии плесеней в то же время аккумулируют механические загрязнения из воздуха, что значительно влияет на свойства материала и делает его питательным субстратом для роста других микроорганизмов. В табл. 27 и 28 приведены виды плесеней, выделенные из двух пластиков — бакелита и поливинилхлорида — в разных областях КНР описаны формы их роста и влияние на материалы, изученные в результате лабораторного исследования.  [c.102]

На этой диаграмме (см. рис. 76, а) точка а соответствует пределу пропорциональности, так что при сг < сг р выполняется обобщенный закон Гука (2,147), и при растяжении стержня согласно (2.153) имеем <7 = Ее. Недалеко от точки а лежит точка соответствующая пределу упругости <Туцр и определяющая область нелинейной упругости (участок а6), когда нарушается закон (2.14 7) и имеет место более общая зависимость (2.145). Участок диаграммы а < сГу р характерен тем, что после снятия нагрузки остаточных деформаций не остается, т. е. разгрузка идет по той же линии ОаЬ, что и нагрузка, только в обратном направлении. При полной разгрузке (сг = 0) деформация обращается в нуль. Однако в области СТ процесс деформации становится неустойчивым (участок с ) и только при и = ((7 к — предел текучести) удлинение образца заметно увеличивается материал, говорят, начинает течь , т. е. образец без изменения нагрузки значительно увеличивает свою длину. Поскольку деформация идет почти без изменения объема , то при течении на образце образуется характерное сужение — шейка . Участок (площадка текучести) соответствует пластическому состоянию материала, и если она строго горизонтальна, то материал называют идеально пластическим. После точки Л наступает упрочение материала, т. е. монотонное возрастание напряжения, а затем (точка в ) — разрушение (предел прочности). Участок диаграммы от Ь до е характерен тем, что если в какой-то момент (точка М) снять нагрузку, то уменьшение деформации пойдет по линии ММ, приводя к остаточной деформации ОМ , при повторном нагружении образец будет следовать новой кривой М М .  [c.389]


Статическое деформационное старение стали протекает в несколько стадий. Начальная стадия деформационного старения стали заканчивается образованием атмосфер Коттрелла. После образования насыщенных атмосфер в результате дальнейшего увеличения плотности примесных атомов на дислокациях происходит образование сегрегаций (неустойчивых выделений или предвы-делений). Завершается деформационное старение образованием мелкодисперсных выделений на дислокациях [45, с. 142]. Поэтому наряду с повышением прочностных свойств происходит значительное повышение температуры хладноломкости, снижение пластичности и вязкости стали, часто доходящее до почти полной потери способности стали к пластической деформации. Субструктурные изменения при статическом деформационном старении в большей степени влияют на ударную вязкость, чем на свойства при растяжении. Динамическое деформационное старение ввиду кратковременности процесса и благодаря высокой плотности дислокаций заканчивается в большинстве случаев образованием атмосфер или сегрегаций на дислокациях. Поэтому снижение пластичности стали в результате динамического деформационного старения обычно происходит не до полной потери способности стали к пластической деформации. Субструктурные изменения при динамическом деформационном старении оказывают примерно одинаковое  [c.298]

Исследуя явления пластической неустойчивости, А. Д. Том-ленов [3] показал, что для металлов со степенным упрочнением (Oi=Ae ) вне зависимости от соотношения компонентов друх-осного растяжения переход к локальному развитию деформаций наступает при наибольшей главной деформации eip = n.  [c.24]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Таким образом, по диаграммам на рис. 1.6 можно установить то значение истинного напряжения, при котором сила Р проходит через максимум это будет при равенстве ординаты соответствующей кривой деформирования тангенсу угла наклона касательной. На нисходящей ветви диаграммы растяжения (рис. 1.5) процесс равномерного пластического деформирования становится неустойчивым. Действительно, если допустить весьма малое случайное сужение на малом участке длины образца, то на этом участке пластическое деформирование сможет протекать при меньшей силе, чем на соседних участках. При этом на участке случайного сужения пластическое деформирование будет продолжаться, а на соседних прекратится, и там диаметр образца практически останется таким же, каким он был в момент прохождения силы Р через максимум. Предел прочности (временное сопротивление) = P/Fg будет при этом тем условным напряжением, которое отвечает пределу равномерного пластического деформирования образца (истинный предел прочности Стц = P/F выше Стц обычно на 5—10 %). Однако для определенных материалов, температур и скоростей истинная диаграмма деформирования может быть и такой, что условие (1.4) не выполняется вплоть до момента физического разру-  [c.13]

Однако так как рассматриваемая область окружена материалом, оказывающим сопротивление возникновению текучести, то в ней не смогут развиться пластические деформации названной величины. Допустим, что удлинение, отвечающее пределу текучести, составляет 4%. Тогда малый элемент материала должен будет сузиться в поперечных направлениях на 2%. Но в окружающем материале предел текучести не будет достигнут, так что в нем получатся только упругие деформации. Предположим, что предел текучести равен 2100 кг/см , а модуль упругости Е=2 100 ООО кг/см , тогда упругие деформации в осевом направлении равны 0,001, а в поперечных направлениях 0,0003 (считая коэффициент Пуассона равным V—0,3). Таким образом, в материале, окружающем небольшую пластическую область, боковые упругие деформации составляют только три двухсотые части, или 1,5% соответствующих пластических деформаций, возникающих в упомянутой области при условии ее свободного деформирования. Поэтому, помимо малых пластических деформаций, в этой области должны иметь место упругие деформации ). То же может получиться и во многих других более слабых областях. При этом может оказаться, что среднее напряжение превысит значения местного предела текучести тогда дальнейшее увеличение нагрузки постепенно приведет напряжения в образце в состояние неустойчивого равновесия (предполагается, что отсутствуют резкие концентраторы напря-. жения — такие, как резкие выкружки у концов цилиндрической части образца, небольшие отверстия или надрезы). При некоторой более высокой нагрузке становится возможным образование нового типа пластических деформаций, когда последние развиваются без поперечного сужения, а именно образование пластических деформаций простого сдвига в тонком слое образца, наклоненном под углом 45° по отношению к направлению растяжения. В п. 13 гл. XV было показано, что при простом сдвиге пластические деформации в стали возникают при напряжении сдвига т = ао/]/3=0,577ац, где Ор есть нижний предел текучести стали при одноосном растяжении. В случае плоского напряженного состояния простого сдвига X в тонком слое AB D материала (фиг. 273), наклоненном  [c.347]


Смотреть страницы где упоминается термин Пластическая неустойчивость при растяжении : [c.239]    [c.165]    [c.144]    [c.31]    [c.350]    [c.213]    [c.24]    [c.343]    [c.241]    [c.293]    [c.213]   
Ползучесть кристаллов (1988) -- [ c.48 ]



ПОИСК



Неустойчивость

Пластическая неустойчивость

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте