Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы радиационного давления (метод радиометра)

МЕТОДЫ РАДИАЦИОННОГО ДАВЛЕНИЯ (МЕТОД РАДИОМЕТРА)  [c.80]

Методы радиационного давления (метод радиометра) 81  [c.81]

В технике измерения радиационного давления часто используют нулевой метод ), т. е. тем или иным способом определяют силу, необходимую для возвращения приемного элемента радиометра в то положение, которое он занимал до включения звука. Наиболее просто это делается в весах, которые после включения звука снова уравновешиваются снятием груза со свободной чашки. В работе [30] в качестве уравновешивающих сил применялись силы взаимодействия тока с магнитным полем. Для этого на подвижном коромысле радиометра была укреплена легкая катушка провода, находящаяся в поле постоянного магнита. По величине постоянного тока, пропускаемого через катушку в соответствующем направлении и необходимого для возвращения радиометра в нулевое положение, определялась радиационная сила. Этот прибор позволял  [c.201]


Измерение радиационного давления затрудняется рядом явлений. В звуковом поле на показания радиометра могут влиять конвективные потоки от источника звука (особенно в вертикальном звуковом поле), силы поверхностного натяжения жидкости, пузырьки, осаждающиеся на приемном элементе радиометра, и ряд других причин. Но особенно сильное влияние на показания радиометра оказывает акустическое течение (см. гл. 6) ). Для уменьшения этого влияния использовалось несколько методов, эффективность которых, по-видимому, все-таки недостаточна.  [c.202]

Во-первых, перед радиометрами помещают преграды (обычно на ультразвуковых частотах — это тонкие полимерные пленки), которые бы пропускали звук полностью (или почти полностью), а поток задерживали. Этот метод не устраняет полностью влияния потока, поскольку течение возникает (правда, при некоторых условиях значительно более слабое) сразу же за преградой. Другой метод разделения давления потока и радиационного давления — это работа в баллистическом режиме [33]. Здесь используется то не совсем изученное свойство акустического течения, что время установления течения, по-видимому, существенно больше, чем время установления звукового поля, и, следовательно, радиационное давление начинает действовать практически сразу же после включения поля,  [c.202]

Перейдем теперь к методам измерения других величин, характеризующих интенсивность звукового поля. Исследуя работу излучателя, Гартман пользовался диском Рэлея и радиометром [30, 46]. Оба эти прибора позволяют измерять величины, пропорциональные интенсивности или плотности звуковой энергии Е [см. формулу (16)], а именно квадрат амплитуды колебательной скорости и радиационное давление.  [c.29]

Радиометрический метод основан на измерении радиационного давления в поле ультразвуковых волн [3,4]. Радиационное же давление однозначно связано с интенсивностью волн. Этот метод прост, не требует сложных радиотехнических устройств и вполне надежен. В тех слз чаях, когда требуется оценить, например, кавитационную эффективность ультразвукового поля, он может оказаться незаменимым [5, 6]. Если радиометр имеет малые размеры, то с его помощью можно изучать форму поля.  [c.330]

При измерении коэффициента поглощения этим методом разделение динамического давления потока и радиационного давления несколько усложняется еще и тем, что должны быть созданы условия, соответствующие теории. В работе по определению поглощения ультразвука по эккартовским потокам [6] разделение радиационного давления и динамического давления потока основывалось на том, что время установления потока больше времени отклонения радиометра под действием радиационного давления радиометр успевает отклониться под действием радиационного давления (что позволяет определить плотность звуковой энергии), а затем отклонение радиометра медленно возрастает под действием динамического давления потока. Этот метод, однако, не может считаться свободным от недостатков, о чем уже говорилось выше.  [c.123]


Несколько иной метод определения коэффициента поглощения звука был предложен в работе [57]. Схема установки приведена на рис. 21. Ультразвуковое поле (1 Мгц), создаваемое источником полностью заполняло трубку с исследуемой жидкостью 2 трубка имела обводной капиллярный канал 3 для обратного потока. Согласно соотношению (31), при радиусе звукового пучка, равном радиусу трубы, скорость акустического течения обращается в нуль. В экспериментальных условиях, конечно, из-за неоднородности звукового поля по сечению трубки и влияния пограничного слоя вблизи стенок, а в описываемой установке еще из-за тока жидкости через капиллярный канал 3 перенос жидкости имеется, однако скорость его существенно меньше скорости течения в свободном звуковом поле. Влияние динамического давления потока на механический приемник радиационного давления 4 было при этих условиях относительно мало. Отраженный от приемника 4 звук поглощался поглотителем 5. Авторы работы [58] отказались от абсолютного измерения звукового поля радиометром, потому что приемный элемент радиометра, отражая звук, не позволял создать полностью бегущую волну (в этой работе плотность звуковой энергии определялась из импедансов излучателя в воздухе и в жидкости). Согласно закону Гагена — Пуазейля, скорость движения  [c.123]

Радиационное давление — квадратичная величина. Отношение радиационного давления к амплитуде звукового давления в волне — порядка числа Маха. Поэтому экспериментальное определение радиационного давления связано с измерением относительно малых давлений. Метод абсолютного измерения звукового поля радиометром, как правило, применяется в жидкостях аа частотах мегагерцевого диапазона. В настоящее время разработан целый ряд конструкций радиометров (краткий обзор можно найти в [25]), которые различаются как по возможности работать в вертикальном или горизонтальном звуковом пучке, так и,  [c.200]

Методы индикации отклонения радиометра не отличаются от методов определения малых смещений или малых-поворотов здесь применяются оптические методы, при которых луч отражается от маленького легкого зеркальца, закрепленного на радиометре, наблюдение отклонения в микроскоп и др. В [16] для определения отклонения радиометра применен легкий блок конденсаторов ротор блока соединялся с подвижным коромыслом радиометра по изменению емкости конденсаторов можно было судить об отклонении радпометра. Оригинальная разновидность радиометра предложена в [29]. Радиационное давление определялось по деформации свободной поверхности жидкости. Этим методом широко пользуются для качественного определения интенсивности сравнительно мощного ультразвука в жидкостях.  [c.201]

В [27] для разделения радиационного давления звука и динамического давления потока использовалось то обстоятельство, что время установления стационарного звукового поля существенно меньше, чем время установления стационарного акустического течения. Включение звука приводит сразу же к отклонению радиометра за счет радиационного давления (правда, только в том случае, когда инерционность радиометра мала) и затем к постепенному увеличению отклонения за счет динамического давления потока. Этот метод вызвал ряд возражений [38]. Имея в виду различную зависимость динамического и радиационного давлений от параметров жид1 ости и звукового поля, можно все-таки думать, что в некоторых случаях этот метод может быть успешно применен для измерения радиационного давления, а следовательно, и скорости потока с достаточной точностью.  [c.236]

В первой работе, где был применен этот метод [27] (см. также [48]), разделение основывалось на том, что скорость течения мала по сравнению со скоростью звука. Поэтому при включении источника звука радиометр быстро отклоняется под действием радиационного давления, затем происходит постепенное увеличение отклонения радиометра под действием потока до какого-то предельного, соответствующего сумме динамического и радпа-ционного давлений, Этот метод встретил ряд возражений, сущность которых сводится к тому, что акустическое течение устанавливается во всем пространстве, занятом звуком, за время меньшее, чем время отклонения радио-  [c.243]


Приёмники ультразвука. Наиболее распространёнными П. у. являются электроакустические преобразователи. К ним относятся в первую очередь пьезоэлектрические преобразователи, магнитострикционные преобразователи, полупроводниковые и пьезополупроводниковые преобразователи, электростатические приёмники и электродинамические приёмники. Приёмники этого типа преобразуют акустич. сигнал в электрический крайне малая инерционность позволяет воспроизводить временную форму сигнала и, следовательно, получать сведения о его фазе, частоте и спектре. В зависимости от конструкции приёмного элемента, а также от функциональных особенностей применяемой с приёмником электронной схемы электроакустические преобразователи могут служить приёмниками звукового давления, колебательной скорости, ускорения, смещения. Термические приёмники используются в основном для измерения интенсивности звука они имеют значительную инерционность. Благодаря большой инерционности усреднённые по времени показания дают приёмники механич. типа — Рэлея диск и радиометр. Первый служит для измерения амплитуды колебательной скорости, второй — для измерения радиационного давления, т. е. плотности звуковой энергии и интенсивности звука. Звуковое давление и интенсивность звука могут измеряться также различными оптич. методами (напр., по дифракции света на ультразвуке), основанными на изменении показателя преломления среды под действием акустич. колебаний, возникновении двойного лучепреломления и других оптич. эффектов в звуковом поле.  [c.269]

В качестве приемников динамического давления могут служить различные устройства легкоекоромысло (типа радиометра) с закрепленным начнем приемным элементом, помещаемым в звуковое поле, трубки типа трубок Пито. Такого рода измерения значительно осложняются тем, что, помимо динамического давления потока, на эти приемники действует звуковое радиационное давление, величина которого по порядку величины может быть равна величине динамического давления стационарного потока. В работе [37] для определения динамического давления потока предложено использовать приемную головку радиометра в виде рамки, затянутой пленкой, прозрачной для звука и непроницаемой для потока. При этих условиях радиационное давление уже не будет действовать на приемный элемент радиометра, если, конечно, поглощение звука в пленке достаточно мало, тогда как динамическое давление потока вследствие непроницаемости пленки действует полностью. Можно защитить от потоков приемную головку обычного радиометра (полностью или частично поглощающую или отражающую) или трубки Пито [20] непроницаемым для потока и прозрачным для звука экраном. В этом случае измеряется величина, пропорциональная радиационному давлению. Разница между полным давлением и радиационным позволяет определить динамическое давление постоянного потока и, следовательно, его скорость. В работе [6] для разделения радиационного давления звука и динамического давления эккартовского потока использовалось то не совсем изученное обстоятельство, что время установления стационарного звукового поля существенно меньше времени установления стационарного акустического течения. Включение звука приводит сразу же к отклонению радиометра под действием радиационного давления (правда, только в том случае, когда инерционность радиометра мала) и затем к постепенному увеличению отклонения под действием динамического давления потока. Этот метод вызвал ряд возражений [35], сущность которых сводится к тому, что, во-первых, процесс установления течения происходит во всем объеме и, следовательно, динамическое давление потока, хотя и не в полной мере, но все же начинает действовать при включении звука и, во-вторых, инерционность радиометров, как правило, столь велика, что может быть сравнима с временем установления постоянного потока.  [c.111]


Смотреть страницы где упоминается термин Методы радиационного давления (метод радиометра) : [c.244]    [c.374]    [c.125]    [c.15]    [c.337]   
Смотреть главы в:

Гидроакустические измерения  -> Методы радиационного давления (метод радиометра)



ПОИСК



Давление радиационное

Метод радиационный

Радиометр

Радиометрия



© 2025 Mash-xxl.info Реклама на сайте