Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рэлеевское радиационное давление

Гольдберг 3. A., Наугольных К. A., 0 рэлеевском радиационном давлении. Акуст. ж. 9, 28 (1963).  [c.206]

В [24] был рассмотрен случай рэлеевского давления в стоячей волне, когда одна из стенок совершает колебания. Если расстояние между стенками L, то радиационное давление аа жесткую стенку  [c.200]

На рис. 5 изображены в схематическом виде кривые распределения колебательной скорости У, звукового давления Р, радиационного давления и продольной составляющей скорости рэлеевского потока в стоячей волне. Так как распыление наиболее интенсивно протекает в узле давления, то следует полагать, что ни Р, ни ни г не ответственны за этот процесс. Градиенты давления на диаметре капли также невелики, так как размеры капли во много раз меньше длины волны. Поэтому можно предположить, что механизм распада капель в звуковом поле аналогичен механизму этого процесса в воздушной струе, как он трактуется в работе [25], и состоит в том, что под влиянием внешнего потока внутри капли (тангенциальные составляющие скорости жидкости на поверхности капли и газа равны) возникает движение, динамический напор которого при некоторых условиях превышает поверхностное натяжение. Это и приводит к дроблению капли. Для ламинарного потока радиус неустойчивой капли может быть найден из выражения [25]  [c.591]


Рис. 5. Схема распределения звукового давления Р, колебательной скорости V, радиационного давления горизонтальной составляющей рэлеевского течения и положение капли в волноводе Рис. 5. Схема распределения <a href="/info/19402">звукового давления</a> Р, <a href="/info/201371">колебательной скорости</a> V, <a href="/info/19403">радиационного давления</a> горизонтальной составляющей рэлеевского течения и положение капли в волноводе
В такой простой постановке можно рассчитать радиационные силы, действующие на частично отражающую и частично поглощающую плоскопараллельную пластину, и определить рэлеевское давление в стоячей волне между двумя неподвижными стенками [5, 71.  [c.126]

До сих пор мы говорили об акустических течениях под действием ланжевеновского радиационного давления, обусловленного поглощением ультразвуковых волн и изменением их импульса в вязкой среде. Однако из анализа, приведенного в предыдущем параграфе, вытекает, что акустические течения при определенных условиях моГут возникать и в недиссипативной среде. В частности, средняя по времени скорость смещения частиц среды в поле плоских волн конечной амплитуды может быть отличной от нуля. Правда, это не всегда означает наличие направленного стационарного потока среды. Например, в поле волн с бесконечно протяженными фронтами такой поток невозможен в силу закона сохранения массы постоянная составляющая скорости смещения при этом компенсируется отличной от нуля постоянной составляющей акустического давления или плотности. В случае же ограниченного ультразвукового пучка, контактирующего с невозмущенной жидкостью, рэлеевское радиационное давление в пу чке может вьнывать циркулярные токи нелинейного происхождения. Существование таких су губо нелинейных акустических течений было, в частности, подтверждено экспериментально [42].  [c.122]

Во-вторых, при расчете функции ф учитывались только диффузионные эффекты, тогда как экспериментальная функция является результатом действия всех работающих на дегазацию механизмов. Как мы видели, кроме диффузии, сюда входят эффекты, ускоряющие выделение из жидкости свободных пузырьков коалесценция за счет силы Бьеркнеса и акустических потоков, изменение скорости всплывания пузырька под действием силы радиационного давления и увлечение его движущейся жидкостью. Насколько существенны эти факторы, можно судить по результатам, приведенным в гл. 3, где рассматривалось поведение одиночного пузырька или пары пузырьков в звуковом поле. Мы видели, что влияние акустических потоков существенно в особых случаях. Действительно, рэлеевские потоки в воде в поле стоячей волны имеют весьма незначительные скорости и не могут оказывать заметного влияния ни на число встреч пузырьков, ни на скорость их всплывания. Роль эккартовского потока при больших интенсивностях звука на высоких частотах и удачном соотношении радиуса звукового пучка и трубы может быть весьма значительной. Однако в проводившихся экспериментах соответствующим выбором диаметра трубы (/ 1= 0) вероятность появления потока была сведена до минимума. Измерение распределения давления по диаметру трубы показало, что из-за неоднородности поля можно принять г = 0,8 Гх, при использованных в эксперименте значениях интенсивности это приводило к весьма небольшим значениям скорости потока. Из приведенных в 3 гл. 3 оценок поправки к скорости на радиационное давление следует, что она существенна только для пузырьков резонансного размера, а для остальных (а их подавляющее большинство) ничтожна. Таким образом, наблюдавшееся в наших экспериментах изменение концентрации газа в жидкости вызвано диффузией растворенного газа в пузырьки и коалесценцие пузырьков под действием си.ты Бьеркнеса, т. е. ф,= фд+ф . Коалесценция пузырьков влечет за собой, с одной стороны, увеличение скорости всплывания пузырьков, что способствует увеличению ф.,, а с другой, как результат увеличения радиуса пузырьков, изменение величины диффузионного потока газа на пузырек в сторону, зависящую от частоты звука. Как мы видели, для коалесценции необходимо, чтобы сдвиг по фазе между колебаниями рассматриваемой пары пузырьков не превышал г. 2. Число коалесценций при этом зависит от концентрации и размеров пузырьков (см. 2 гл. 3). Так как постоянные коэффициенты в функции распределения иузырьков по числу и радиусам неизвестны, пока пет возможности оценить число встреч пузырьков при различных интенсивностях звука и частотах, т. е. найти зависимость эффекта коалесценции от основных параметров поля. Так как ф складывается из фд и ф , можно было бы предположить, что существование максимума кривой частотной зависимости обусловлено онределенным взаимодействием фд и ф . В самом деле, если принять, что диффузионная стадия  [c.326]



Смотреть страницы где упоминается термин Рэлеевское радиационное давление : [c.186]    [c.121]    [c.200]   
Смотреть главы в:

Введение в нелинейную акустику Звуковые и ультразвуковые волны большой интенсивности  -> Рэлеевское радиационное давление



ПОИСК



Давление радиационное



© 2025 Mash-xxl.info Реклама на сайте