Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление пластической деформации усталости

Определив коэффициент запаса прочности по сопротивлению усталости, необходимо сравнить его с коэффициентом запаса по сопротивлению пластическим деформациям. Последние определяются формулами  [c.231]

Кроме коэффициента запаса прочности по сопротивлению усталости необходимо вычислять коэффициент запаса по сопротивлению пластическим деформациям, так как точка 5 может оказаться выще линии Л4 . Коэффициент запаса прочности по сопротивлению пластическим деформациям вычисляется по формулам  [c.320]


Для напряженных состояний с асимметричными циклами переменных напряжений условия прочности характеризуются либо сопротивлением усталости, либо сопротивлением пластическим деформациям или статическому разрушению. Для выяснения того, какой из критериев должен быть использова в конкретном расчетном случае, сопоставляются соответствующие запасы прочности. Для определения запаса прочности по сопротивлению усталости напряжения асимметричного цикла приводятся к эквивалентным напряжениям с симметричным циклом по формулам  [c.450]

При расчете на сопротивление пластическим деформациям обычно допускают более низкие запасы прочности -3 связи с тем, что образование остаточных деформаций еще не приводит конструкцию к окончательному разрушению. При расчете на сопротивление хрупкому статическому разрушению запасы прочности должны быть повышены в силу опасности таких разрушений из-за возможного влияния высоких остаточных напряжений, неоднородности материала и т. д. При расчете на усталость запас прочности выбирается в зависимости от достоверности определения усилий и напряжений, уровня технологии изготовления деталей и т. д.  [c.484]

Tif no сопротивлению пластическим деформациям меньше, чем по сопротивлению усталости, поэтому принимается т. 3900  [c.528]

Эти отклонения в данных о механической прочности характеризуются сомножителем 2. величина которого при применении более высококачественных материалов и совершенной технологии при расчете на сопротивление пластическим деформациям составляет 1,3—2,0 в зависимости от степени пластичности при расчете на усталость составляет 1,5— 1,7, увеличиваясь для менее однородных материалов (литье) и деталей больших размеров и сложных форм (п — 3 и более).  [c.536]

Чтобы обеспечить необходимую стойкость инструмента, стали для горячего деформирования должны иметь 1) теплостойкость, обеспечивающую необходимое сопротивление пластической деформации (предел текучести, твердость) для сохранения формы гравюры при рабочих температурах 2) вязкость, особенно при работе с динамическими нагрузками 3) износостойкость 4) разгаростойкость, т. е. сопротивление термической и термомеханической усталости 5) окали-ностойкость, определяющую скорость окислительного износа, особенно выше 600 С 6) прокаливаемость для достижения равнопрочности по сечению.  [c.655]


Влияние концентрации напряжений на сопротивление усталости при повышенных температурах связано с упруго-пластическим перераспределением напряжений, чему способствует ослабление сопротивления пластическим деформациям -с ростом температуры. Используя циклические диаграммы деформирования для различного накопленного числа циклов, можно построить кривые усталости в истинных напряжениях и показать для сталей с выраженной циклической пластичностью, что эти кривые при растяжении-сжатии и переменном изгибе как  [c.224]

В общем случае экстремальные значения истинного сопротивления разрыву гладких образцов 5,( не совпадают ни с продольным направлением, ни с поперечным (рис. 10.6). То же относится и к анизотропии предела выносливости. Построение зависимостей указанных характеристик от направления нагружения может быть выполнено по той же методике, которая была применена для построения зависимости сопротивления пластической деформации. Для сталей и легких сплавов анизотропия сопротивления усталости обычно проявляется более  [c.336]

Наряду с использованием условия прочности по сопротивлению усталости, приведённого выше, производится проверка на условия прочности по сопротивлению пластической деформации при изгибе (аналогично растяжению)  [c.364]

Запас прочности определяется по сопротивлению усталости, а при больших асимметриях цикла расчёт должен также проводиться по сопротивлению пластическим деформациям или статическому разрушению.  [c.371]

К другой группе факторов относятся а) отклонения механических характеристик от нормативных благодаря нарушениям в условиях изготовления, ковки, термической обработки б) повышенная чувствительность к недостатка. механической обработки в) неоднородность свойств благодаря структурным особенностям материалов, малой пластичности, повышенной остаточной напряжённости и т. д. Эти отклонения в характеристиках механической прочности характеризуются сомножителем величина которого при применении более высококачественных материалов и совершенной технологии, при расчёте иа сопротивление пластическим деформациям составляет 1,2—2,0 в зависимости от степени пластичности при расчёте на усталость 2 составляет 1,3-1,7, увеличиваясь для менее однородных материалов (литьё) и деталей больших размеров и сложных форм до 2 = 3 и более.  [c.384]

Твердость и прочность поверхностного слоя повышается на глубину 0,2—1,0 мм в нем создается благоприятное распределение остаточных напряжений по сечению детали и изменяется форма и ориентация кристаллических зерен в направлении более эффективного их сопротивления пластической деформации и разрушению резко снижается чувствительность металла к поверхностным дефектам. Дробеструйный наклеп устраняет неблагоприятное влияние на усталость обезуглероженного поверхностного слоя стальных деталей.  [c.237]

Развитие механики твердого тела на этих стадиях способствовало новой постановке вопросов сопротивления материалов, расчета прочности и долговечности элементов конструкций. Возникла вероятностная трактовка расчета на сопротивление усталости по признаку возникновения трещины, разработаны методы линейной механики разрушения для расчета на сопротивление хрупкому разрушению, методы расчета на сопротивление повторным пластическим деформациям в связи с явлениями усталости в пределах малого числа циклов. Эти методы все шире используются при проектировании высоконагруженных конструкций, они получают отражение в нормативных материалах промышленности.  [c.5]

На сопротивление усталости существенно влияет среда не только в смысле коррозии, но также в смысле температурных условий работы конструкций. Понижение температуры затрудняет пластическую деформацию и приводит к повышению выносливости, особенно для полированных образцов из малоуглеродистых пластичных и хладноломких сталей. В области закритической температуры для хрупкого состояния пределы выносливости приближаются к критическим напряжениям, достаточным для хрупкого разрушения и значительно (в 1,5—2 раза) превышающим значения o i для комнатной температуры при отсутствии концентрации напряжений. При наличии концентрации напряжений повышение (а 1)к также имеет место, но в меньшей степени (в 1,3—1,5 раза). Наименее выражено повышение пределов выносливости с понижением температуры у вязких хромоникелевых сталей и легких сплавов, не обладающих выраженной хладноломкостью. Однако  [c.160]


Таким образом, если при многоцикловой усталости уровень предела выносливости в основном определяется шероховатостью поверхности наличием дефектов и остаточных напряжений, при малоцикловой усталости величина циклической прочности и долговечность определяются сопротивлением поверхностных слоев пластической деформации и степенью однородности протекания микропластических деформаций.  [c.196]

Для каждой температуры нагрева существует оптимальная величина предварительной пластической деформации (наклепа), обеспечивающей максимальное сопротивление усталости исследуемого сплава. С повышением температуры эта величина предварительной остаточной деформации уменьшается и при температуре, близкой к температуре начала рекристаллизации, положительный эффект деформационного упрочнения на усталостную прочность исчезает.  [c.199]

Уменьшение пластичности жаропрочных сталей и сплавов, связанное с механической обработкой и другими технологическими операциями, в которых производится предварительная пластическая деформация, приводит к ускорению повреждаемости сталей и сплавов при действии циклического и длительного статического нагружения, а следовательно, к уменьшению долговечности и особенно к снижению сопротивления многократным перегрузкам при испытании на усталость и длительную прочность.  [c.201]

Тепловой эффект снижает сопротивление деформированию. Влияние его тем значительнее, чем больше скорость и степень деформации, чем меньше теплоемкость, теплопроводность и удельная поверхность металла. Влияние теплового эффекта зависит также от вида нагружения и охлаждения образца в процессе циклического нагружения. Надо полагать, что в условиях высокочастотного нагружения вследствие затрудненного теплоотвода при быстром протекании динамической деформации, развивающегося по плоскостям скольжения тепла достаточно для частичного снятия наиболее неустойчивых искажений решетки, обусловленных неоднородностью локальной пластической деформации. В отдельных случаях этого тепла может быть достаточно и для возникновения вспышки рекристаллизации вблизи плоскости сдвига, вызывающей снижение сопротивления усталости. При низких частотах нагружения (малые скорости деформирования) влияние теплового отдыха уменьшается, так как скорость деформирования невелика и развивающееся по плоскостям скольжения тепло успевает рассеяться.  [c.243]

Кроме коэффициента запаса прочности по соЬротив-лению усталости, необходимо вычислять коэффициент запаса по сопротивлению пластическим деформациям.  [c.348]

С позиций современной теории процесс усталости металлов и их сплавов при действии циклических напряжений заключается в накоплении искажений кристаллической решетки до критической величины (сопроволсдается повышением микротвердости и предела текучести при снижении модуля упругости), разрыхлении после достижения критической плотности дислокации (сопровождается ослаблением сопротивления пластической деформации, нарушением сплошности и снижением микротвердости), развитии микротрещин до критического размера (происходит снижение критериев прочности и пластичности) и самопроизвольном распространении микротрещин критического размера, приводящем к окончательному разрушению детали [19, 27, 39, 65 и 67].  [c.44]

Штамповые стали для горячего деформирования должны обладать высоким сопротивлением пластической деформации, высокой теплостойкостью и вьгсокой разгаростойкостью, т. е. высоким сопротивлением термической усталости. Кроме того, эти стали не должны быть чувствительными к отпускной хрупкости.  [c.154]

Прочность — главный критерий работоспособности для большинства деталей. Деталь не должна разрушаться или получать пластические деформации при действии на нее нагрузок. Различают статическую потерю прочности и усталостные поломки деталей. Потеря прочности происходит тогда, когда значение рабочих напряжений превышает предел текучести а,, для пластичных материалов или предел прочности ст для хрупких материалов. Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Усталостные поло.мки вызыва -отся длительным действием переменных напряжений, значение которых превышает характеристики выносливости материалов (например, о ,). Основы расчета на прочность и усталость были рассмотрены в разделе Сопротивление материалов . Здесь же общие законы расчетов на прочность т усталость рассматривают в применении к конкретным деталяму  [c.260]

Представление об интерференция вош напряжений, возникающих в образце, позволило объяснить результаты некоторых усталостных испытаний. Суммирование колебаний различных частот и амплитуд является причиной перегрузки отдельных объемов. материала образца и зарождения первичных субмикроскопических трещин при переменном агружении. Снижению сопротивления усталости стали при двухчастотном нагружении способствует локализация пластической деформации и более интенсивное накопление искажений кристаллической решетки, а также ускоренное распространение усталостных трещин.  [c.180]

Исследования процесса деформирования [22, 27, 48, 67] свидетельствуют о наличии ряда специфических эффектов, свойственных методике испытаний на термическую усталость это, одной стороны, существенная локализация пластической деформации в наиболее нагретой части образца, и с другой — при более высоких параметрах термомеханического воздействия — интенсивное формоиз1менение [27] (появление ряда гофров ), проявляющееся из-за нестационарности процесса циклического унрутопластического деформирования разных зон образца в связи с возникновением продольного градиента температур. Эти эффекты вызывают значительные трудности в расшифровке действительной картины процесса упругопластического деформирования и вносят существенные пограшности в оценку сопротивления термической усталости.  [c.25]


Специфической особенностью повреждения при малоцикловой усталости, отличающей ее от обычной усталости, является накопление односторонней макропластической деформации. Эта особенность сначала порождала сомнения в приемлемости поверхностного наклепа для увеличения несущей способности деталей, работающих в условиях малоцикловой усталости. Эти сомнения базировались на том, что ППД сопровождается уменьшением запаса пластичности наклепанного слоя, тогда как способность к накоплению пластической деформации является одним из основных факторов, определяющих сопротивление малоцикловой усталости материалов и конструкций. По той же причине ставилась под сомнение устойчивость благоприятных остаточных напряжений, вызванных поверхностным наклепом. Однако в результате ряда специальных исследований (применительно к сосудам давления, подштамновым плитам прессов, корпусам подводных лодок и др.) эти сомнения были преодолены. К настоящему времени накоплен большой экспериментальный материал, подтверждающий возможность применения поверхностного наклепа для увеличения несущей способности материалов в условиях малоцикловой усталости.  [c.164]

Основную роль в увеличении сопротивления малоцикловой усталости играют возникающие при поверхностном наклепе благоприятные остаточные напряжения сжатия. Вместе с тем необходимым условием при выборе режимов поверхностного наклепа при малоцнкловой усталости является сохранение в поверхностном слое достаточной способности материала накапливать пластические деформации. Влияние остаточных напряжений от поверхностного наклепа проявляется при малоцикловых нагружениях в ослаблении процесса накопления односторонней пластической деформации и в задержке развития трещин малоцикловой усталости. Влияние изменения прочностных свойств поверхностного слоя в определенных пределах проявляется в увеличении разрушающих напряжений.  [c.165]

Расположение кривых термической усталости я аропрочных сплавов (см. рис. 4, а, кривые 1—3) также коррелирует с располагаемой пластичностью сплавов при малых числах циклов, когда удельный вес пластической деформации в цикле значителен и ее роль в формировании предельных повреждений существенна, менее долговечным оказывается и менее пластичный сплав ЭП-220 и, наоборот, при больших числах циклов сплав ЭП-693ВД оказывает меньшее сопротивление термической усталости как обладающий несколько меньшей кратковременной прочностью.  [c.40]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Рис. 5.11. Изменение сопротивления усталости сплава ЭИ617 в зависимости от предварительной пластической деформации и температуры испытаний при частоте нагружения 1000 (а) и 5000 Гц (б) и базе испытания 100 млн. циклов Рис. 5.11. Изменение <a href="/info/32821">сопротивления усталости</a> сплава ЭИ617 в зависимости от предварительной <a href="/info/1487">пластической деформации</a> и <a href="/info/28878">температуры испытаний</a> при <a href="/info/28897">частоте нагружения</a> 1000 (а) и 5000 Гц (б) и <a href="/info/32788">базе испытания</a> 100 млн. циклов
С увеличением частоты нагружения скорость пластической деформации отстает от скорости нагружения, вследствие чего пластическая деформация за полупериод цикла не соответствует уровню напряжений, возникающих за это время. Поэтому накоп- ление повреждаемости, обусловленное пластической деформацией, с увеличением частоты нагружения несколько замедляется, а это способствует повышению усталостной прочности металла. Наряду с этим циклическое нагружение вызывает нагрев металла из-за потерь на внутреннее трение. При дальнейшем увеличении частоты нагружения нагрев металла возрастает, снижая этим сопротивление усталости.  [c.243]


Смотреть страницы где упоминается термин Сопротивление пластической деформации усталости : [c.7]    [c.17]    [c.151]    [c.354]    [c.377]    [c.521]    [c.197]    [c.247]    [c.31]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.383 ]



ПОИСК



Деформация пластическая

Деформация усталости

Пластическая деформаци

Пластическая сопротивление

Сопротивление деформациям

Сопротивление пластическим деформациям

Сопротивление усталости

Усталость

Швы сварные — Прочность и вязкость материала 7 — Сопротивление усталости 22 — Упрочнение пластической деформацией



© 2025 Mash-xxl.info Реклама на сайте