Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость коррозии, Скорость общей

В том случае, когда скорость коррозии замедляется, полученные указанным способом данные являются завышенными. Если при расчете скорости коррозии разность потерь массы всех образцов за время т, и Т + Ат отнести к промежутку времени Ат, ошибка уменьшится и в тем большей степени, чем короче интервал Ат. Однако при коррозионных испытаниях, связанных со сложной аппаратурой, частые остановки которой нежелательны и в. том случае, когда длительность периода от загрузки образцов до выхода, на режим достаточно велика, сократить интервал Ат часто не представляется возможным. Следует также отметить, что в том случае, когда образцы снятые с испытаний для удаления продуктов коррозии, не могут быть использованы для дальнейших испытаний, общее количество образцов для проведения серии испытаний по определению кинетики коррозии как минимум удваивается.  [c.64]


На рис. 5,17 представлена зависимость скорости общей коррозии стали в разбавленном электролите от концентрации нитрита натрия. Кривые, как видно, проходят через максимум, указывающий на то, что малые концентрации стимулируют коррозионный процесс. При некоторой концентрации, которую можно назвать критической, коррозия достигает максимального значения и далее начинает падать. При определенной концентрации, которая называется защитной, коррозионный процесс полностью приостанавливается. Как видно, нитрит натрия может усиливать не только истинную скорость коррозии, но и скорость общей коррозии.  [c.172]

На фиг. 4 представлена зависимость скорости коррозии некоторых сплавов титана (ВТ5, ВТЗ, ВТЗ-1) от концентрации серной кислоты под атмосферой воздуха. Для сравнения на этой же фигуре приведена кривая для титана ВТ1. Из фигуры видно, что общий вид зависимости скорости коррозии от концентрации серной кислоты, полученной для нелегированного титана, сохраняется также и для всех исследованных сплавов. Сплавы титана несколько менее стойки, чем технически чистый титан ВТ1. Исключением является область концентраций серной кислоты 80—90%, где сплавы ВТЗ-1 и ВТ5 более стойки, чем ВТК  [c.154]

При расчетах скорости коррозии рекомендуется учесть следующее. Для вод со значением pH-< 6,3 (конденсаты, химически обессоленная, натрий-, водород-натрий-катионированная и сырая вода при / < 0) эксплуатационные весовые потери металла практически совпадают с потерями металла, определенными в лабораторных и стендовых условиях. В этом случае пересчет показателей не требуется. Мягкие воды со значением рН = 6,3- 8,0 и жесткая вода с I—О требуют подсчета показателей общей коррозии для заданных  [c.165]

Согласно гетерогенному механизму (теория локальных элементов) [11, 311 поверхность корродирующего металла по отношению к анодному и катодному процессам представляется неоднородной (гетерогенной). Происходит пространственное разделение этих процессов. На одних участках поверхности металла протекает анодный процесс, на других — катодный, в силу чего для коррозии необходимо перемещение электрических зарядов вдоль границы раздела фаз в металле — электронов в электролите — ионов. Благодаря такой локализации электродных процессов вся поверхность металла представляется как совокупность площадок различных размеров и форм (анодов и катодов короткозамкнутых гальванических элементов), ток которых, отнесенный к единице площади анодов, будет характеризовать скорость коррозии. В общем случае площадь анодных участков 5 не равна площади катодных 5 и условие сопряженности принимает вид  [c.13]


Влияние добавок одной меди, а также меди с хромом на скорость коррозии стали в естественных водных средах, как пресных, так и соленых, было исследовано во Франции Техническим управлением по использованию стали [14]. Полученные результаты были не совсем последовательны и заметно зависели от состава воды. В общем эти стали не показали улучшения коррозионной стойкости, особенно в морской воде. Согласно некоторым данным, коррозионная стойкость медистой стали с высоким содержанием меди и фосфора несколько выше, чем обычных малоуглеродистых сталей. Однако это различие не стоит преувеличивать, так как во всех случаях потери массы для самых стойких и самых нестойких сталей лежат в пределах 25% от средней величины для всей совокупности исследованных материалов.  [c.19]

Влияние замедлителя на местную коррозию не менее важно, чем его влияние на общую скорость коррозии. Замедлители, которые могут усилить местную коррозию, называются опасными . Вообще коррозия усиливается тогда, когда анодные участки очень малы. Такое положение может наступить в случае, если скорость коррозии ограничивается скоростью катодного процесса, а концентрация анодного замедлителя недостаточна. Например, добавка соли хромовой кислоты в количестве, недостаточном для полного подавления коррозии кислородного типа в случаях железа, стали, цинка и алюминия, вызывает серьезное ускорение коррозии. Применение несколько больших концентраций замедлителя в этих случаях обычно переводит процесс от катодного к анодному ограничению и обеспечивает полную защиту. Важно помнить, что концентрация соли хромовой кислоты, необходимая для устранения точечной коррозии и одновременно для предохранения от общей коррозии, зависит от концентрации таких ионов, как 50/ и особенно С1. Вообще концентрация замедлителя, требующаяся для обеспечения защиты, зависит от ряда обстоятельств состава среды, температуры, скорости движения жидкости относительно металлической поверхности, присутствия или отсутствия в металле внутренних напряжений или внешней нагрузки, состава металла и наличия или отсутствия контакта с другими металлами.  [c.941]

Опытные данные по коррозии ряда металлов и сплавов, в том числе и на железной основе, указывают на то, что величина зерна мало влияет на скорость коррозии. Исключение составляют случаи, когда на границе зерен металла условия таковы, что коррозия может приобрести межкристаллитный характер. Увеличение размеров зерна в этих случаях создает большую возможность появления межкристаллитной коррозии и может заметно усилить ее общая протяженность границ у крупнозернист(эго металла меньше, чем у мелкозернистого, и, следовательно, интенсивность коррозии на единицу длины границы зерна будет больше.  [c.201]

Если скорость общей реакции взаимодействия металла с газовой фазой определяется скоростью процесса диффузии в слое образующего продукта коррозии, то зависимость скорости окисления от давления окисляющего газа может быть совершенно иной и разной для разных поверхностных соединений.  [c.130]

Влияние температуры на скорость процесса в общем случае описывается уравнением типа (242), но может быть осложнено изменением растворимости реагента-окислителя и пленки продуктов коррозии металла в неэлектролите при перемене температуры.  [c.141]

Если в особо чистый металл вводить катодные примеси или структурные составляющие, то в условиях контроля катодного процесса диффузией кислорода это приведет, согласно уравнению (499), к увеличению путей диффузии кислорода и повышению скорости коррозии металла. Однако начиная с некоторой сравнительно низкой степени загрязненности катодными примесями, которая свойственна техническим металлам, дальнейшее увеличение катодных примесей или структурных составляюш,их мало влияет на скорость процесса. Н. Д. Томашов доказал, что при достаточно тонкой дисперсности катодов на поверхности металла или сплава, корродирующего с кислородной деполяризацией при ограниченной скорости диффузии кислорода, даже при сравнительно небольшой общей поверхности микрокатодов, практически используется весь возможный объем электролита для диффузии кислорода к данной корродирующей поверхности (рис. 168), т. е. микрокатоды работают так, как будто Ме-  [c.244]


Опытные данные о коррозии ряда металлов и сплавов, в том числе и на железной основе, указывают на то, что величина зерна мало влияет на скорость коррозии. Исключение составляют случаи, когда на границе зерен металла условия таковы, что коррозия может приобрести межкристаллитный характер. Увеличение размеров зерна в этих случаях приводит к увеличению скорости межкристаллитной коррозии общая протяженность границ у крупнозернистого металла меньше, чем у мелкозернистого,  [c.332]

Установлено, что вредное влияние на коррозионное поведение металлов оказывают растягивающие напряжения. Постоянные растягивающие напряжения (внешние или внутренние) увеличивают скорость общей коррозии металла примерно пропорционально их величине (рис. 230) и часто ухудшают распределение коррозии (что более опасно), переводя ее из общей в местную, вызывая в частности коррозионное растрескивание.  [c.333]

Для разрушения металлов в морской воде характерно наряду с общей равномерной коррозией наличие на поверхности металлов глубоких коррозионных поражений — язвин. При этом коррозионная активность различных водоемов значительно колеблется средняя скорость коррозии стали составляет от 0,08 до 0,20 мм/год, а максимальная глубина язвин — от 0,4 до 1,0 мм/год.  [c.398]

Общая соленость морской воды, которая колеблется в пределах от 1 до 4%, мало влияет на скорость коррозии металлов.  [c.399]

Кинетику коррозии металлов с водородной или кислородной деполяризацией можно исследовать непрерывно при помощи объемных показателей, применяя для этого объемные методы. На рис. 335 приведен общий вид установки для определения скорости коррозии металлов с водородной деполяризацией по объему выделяющегося водорода. Заполнение бюреток в начале опыта и при их периодической перезарядке в процессе испытания осуществляется засасыванием коррозионного раствора с помощью водоструйного насоса.  [c.448]

При достаточно тонкой дисперсности и равномерном распределении катодов на корродирующей поверхности металла уже при малой общей поверхности катодных участков используются Е се пути для подвода кислорода (рис. 18) и дальнейшее увеличение числа катодных участков практически не изменяет количества притекающего кислорода и, следовательно, не влияет на коррозионный процесс. Этим можно, в частности, объяснить, что в неподвижных нейтральных электролитах скорость коррозии сталей с различным содержанием углерода не зависит от содержания последнего.  [c.50]

При подборе конструкционных материалов следует учитывать, что скорость точечной коррозии на сталях, которые подвержены этому виду разрушения, как правило, в несколько раз превышает скорость общей коррозии.  [c.9]

Однако было бы ошибкой полагать, что изучение равновесного состояния не имеет отношения к коррозии. Напротив, фундаментальные исследования неравновесных состояний и расчет скорости коррозии начинаются с утверждения о том, что равновесие было нарушено. В общем, необходимо знать равновесное состояние системы, чтобы оценить различные факторы, влияющие на скорость, с которой система стремится прийти в равновесие (т. е. корродирует).  [c.46]

Недостаточно изучено влияние примесей и металлургических факторов на скорость коррозии в сильнощелочных растворах (pH лг 14), где коррозия также сопровождается выделением водорода. В пассивной области, при pH = lO-f-13, нельзя ожидать резко выраженного влияния примесей (в их обычных концентрациях) или обработки на пассивность металла. В общем, любые условия, повышающие соотношение площадей катода и анода, способствуют достижению пассивного состояния или повышению его устойчивости.  [c.108]

Мы видели, что в сильных кислотах, например соляной, серной, диффузионно-барьерная оксидная пленка на поверхности железа растворяется при pH = 4. В более слабых кислотах, например уксусной или угольной, растворение оксида происходит при более высоком pH, поэтому скорость коррозии железа возрастает и начинается выделение водорода при pH = 5 или 6. Это различие объясняется [81 большей общей кислотностью или нейтрализующей способностью частично диссоциированной кислоты по сравнению о полностью диссоциированной кислотой при данном pH.  [c.109]

Возрастание скорости коррозии железа по мере уменьшения pH обусловлено не только увеличением скорости выделения водорода в действительности облегченный доступ кислорода к поверхности металла вследствие растворения поверхностного оксида усиливает кислородную деполяризацию, что нередко является более важным фактором. Зависимость скорости коррозии железа или стали в неокисляющих кислотах от концентрации растворенного кислорода показана в табл. 6.2. В 6 % уксусной кислоте отношение скоростей коррозии в присутствии кислорода и в его отсутствие равно 87. В окисляющих кислотах, например в азотной, действующих как деполяризаторы, для которых скорость коррозии не зависит от концентрации растворенного кислорода, это отношение близко к единице. В общем, чем более разбавлена кислота, тем больше отношение скоростей коррозии в присутствии и в отсут- ствие кислорода. В концентрированных кислотах скорость выделения водорода так велика, что затрудняется доступ к поверхности металла. Поэтому деполяризация в концентрированных кислотах в меньшей степени способствует увеличению скорости коррозии, чем в разбавленных, где диффузия кислорода идет G большей легкостью.  [c.109]

Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]


Условием КРН является совместное действие растягивающего напряжения и специфической среды. Типичные примеры таких сред для некоторых металлов приведены в табл. 7.1. Следует заметить, что анионы, разрушающие металл при КРН, могут не оказывать влияния на скорость общей коррозии. КРН аустенитной  [c.136]

Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах.  [c.174]

Степень минерализации пластовых вод существенно влияет на характер и скорость коррозии газопромыслового оборудования. Следует отметить, что это влияние неоднозначно. На завершающей стадии разработки газового месторождения пластовая вода попадает в скважины в постоянно возрастающем количестве. В ней растворены минеральные соли Ма, К, С1, Вг и других металлов. С одной стороны, диссоциированные соли увеличивают электропроводность воды, что, естественно, облегчает процессы электрохимической коррозии. Соли Са и Mg (соли жесткости) могут осаждаться на стенках оборудования, разрыхляя пленку продуктов коррозии. Кроме того, соли, содержащие ионы С1, способствуют изменению характера общей коррозии от равномерной к местной, связанной с питтинго-образованием. С другой стороны, значительное увеличение минерализации приводит к уменьшению растворимости газов в воде и, соответственно, к общему снижению ее коррозионной активности [146].  [c.219]

Поверхность ферритной нержавеющей стали 430 примерно через год после начала экспозиции в морской атмосфере частично покрывается ржавчиной. Более высокое содержание хрома (17 /о) но сравнению со сталью 410 повышает стойкость к питтинговой коррозии. Скорость общей коррозии в морской атмосфере, аналогичной атмосфере Кристобаля, настолько мала, что с большим трудом может быть определена путем измерения массы [31].  [c.58]

На рис. У,10 изображена диаграмма, относящаяся к коррозии двух металлов в контакте при совместном действии двух окислителей. Скорость коррозии изолированного металла (1) более слабым окислителем (отрезок 1) меньше, чем сильным (отрезок 2). То же выражают отрезки Зж4по отношению к изолированному металлу (2). Чтобы рассмотреть условия коррозии обоих металлов в контакте, нужно построить суммарную аноДную (2а) и суммарные катодные (2к и 2к ) кривые, а затем общую катодную кривую для обоих окислителей, восстанавливающихся на поверхности двух металлов (22к)- После этого следует найти стационарный потенциал ф , для которого общая скорость окисления будет равна скорости восстановления (отрезки фс/ и фс должны быть равны). Сделав соответствующее построение, мы увидим, что при контакте скорость коррозии металла (1) увеличится, по сравнению со скоростью кор-  [c.174]

В некотором интервале значений pH скорость коррозии стали почти постоянна, здесь процесс контролируется скоростью диффузии кислорода к поверхности металла. Повышение концентрации 1 кислорода лишь сдвигает всю кривую вверх, в сторону более высо-I ких абсолютных значений скорости коррозии стали, но общий ха-1 рактер кривой сохраняется. Кроме того, с ростом концентрации кислорода горизонтальный участок кривой несколько сдвигается влево, в сторону более низких значений pH.  [c.17]

Сорелл и Хойт нашли также, что связь между скоростью коррозии и содержанием сероводорода проще всего выразить через парциальное давление сероводорода в газовой смеси, а не через его вес, объем или процентное содержание. Оказывается, что общее высокое давление не влияет на скорость коррозии. Кривая скорость—время является по своему характеру квазиэкспоненци-альной большая скорость вначале, затем уменьшение ее до истечения 100 или 200 ч, после чего скорость остается постоянной. Циклические нагрузки, например попеременное нагревание и охлаждение или попеременное действие окислительной или восстановительной атмосфер, как это имеет место при каталитическом риформинге, ускоряют коррозию, поскольку они вызывают разрушение сульфидной окалины. Природа основного газа обычно не играет существенной роли, за исключением водорода, который может ускорять коррозию. Как ни странно, примеси небольших количеств воды, хлоридов или органических кислот мало или совсем не влияют на высокотемпературную сероводородную коррозию.  [c.265]

В незащищенных цистернах для нефти и балласта может возникнуть сильная коррозия [10] в результате совместного агрессивного действия нефтяных продуктов, свежей нли соленой воды. Необходимо иметь в виду, что цистерны моют холодной или горячей морской водой. Цистерны, загруженные светлыми нефтепродуктами, подвергаются общей коррозии, поскольку на их внутренних поверхностях масляная пленка не образуется. В соответствии с условиями эксплуатации скорость корозии колеблется в широких пределах и достигает—0,4 мм/год. При наполнении цистерн сырой нефтью (мазутом) на их внутренней поверхности остается масляная или восковая пленка, обладающая защитными свойствами. Эта пленка не покрывает всю поверхность цистерны, и на поверхностн оголенной стали, подверженной также действию балласта из морской воды, может появиться значительная местная коррозия. Механизм этой коррозии может иметь сходство с механизмом процесса, протекающего на небольшой площади незащищенной стали, почти полностью покрытой окалиной пленки нефти илн воска действуют как катоды по той же причине, что и покрытая окалиной поверхность, а коррозия концентрируется на анодных площадках. Некоторые сорта нефти содержат значительное количество сернистых соединений, которые могут реагировать с водой и кислородом с образованием серной кислоты. В результате в цистернах с мазутом протекает точечная коррозия, скорость которой колеблется в широких пределах (до 5 мм/год) в зависимости от условий эксплуатации.  [c.504]

Пористые грунты могут сохранять влагу в течение длительного времени и создают благоприятные условия для аэрации. И пористость, и влажность способствуют повыщению начальной скорости коррозии. Однако зависимость межд - скоростью коррозии и пористостью почвы осложняется тем, что продукты коррозии, образовавшиеся в аэрированных грунтах, могут иметь более высокие защитные свойства, чем продукты, образовавщиеся в неаэрированных. В большинстве грунтов, особенно при отсутствии хорошей аэрации, коррозия принимает форму глубокого питтинга. Очевидно, что подобная локализованная коррозия вызывает более опасные разрушения в трубопроводах, чем относительно равномерная общая коррозия, даже если она проходит с более высокой скоростью.  [c.143]

В деаэрированной лимонной кислоте при pH = 3,5 и температуре 37,8 С скорость коррозии алюминия 3003 составляет 0,0 мг1см- сутки. Если ввести в раствор дополнительно 0,2% хлористого натрия, то скорость коррозии увеличится в полтора раза. При насыщении раствора, содержащего 0,2% хлористого натрия,, воздухом скорость коррозии возрастает в 10 раз по сравнению с чистой деаэрированной лимонной кислотой при pH = 3.5. При насыщении лимонной кислоты воздухом увеличивается в 5 раз общая коррозия и появляются язвы. Введение 15 лимонную кислоту хлоридов увеличивает скорость анодного процесса. В насыщенных воздухом растворах лимонной кислоты с pH = 3,5 скорость катодного процесса онределется интенсив-[ остью диффузии кислорода к поверхности металла [82].  [c.54]


Если для электродных реакций — анодной и катодной — известны поляризационные кривые и соотношение площадей электродов, то поляризационная диаграмма коррозии, построенная на основании этих данных, может дать наиболее исчерпывающую характеристику данного коррозионного процесса (рис. 20), На оси абсцисс здесь отложен корро-зиоииый ток / (величина, пропорциональная скорости коррозии), на оси ординат— отрицательные значения потенциалов электродов — Е. Начальное пололсенне потенциалов и Е соответствует разомкнутому состоянию электродов (бесконечно большое омическое сопротивление) точка пересечения анодной и катодной кривых S соответствует короткому замыканию анода II катода без всякого омического сопротивления. Очевидно, что короткому замыканию будет соответствовать максимальный коррозионный ток /шях- В этом случае эффективные потенциалы катода и анода сближаются до общего потенциала коррозии Ех.  [c.52]

Постоянные растягивающие напряхения ( внешние и внутренние) yвeлviчивaют скорость общей коррозии металлов и могут вне-вать коррозионное растрескивание, характеризующееся образованием трещин в плоскостях, нормальных к направлению растягивающих напряжений.  [c.40]

Вывод общего уравнения для вычисления скорости коррозии по данным поляризационных измерений, выходящего за рамки уравнения Стерна—Гири, дан в приложении.  [c.14]

Как отмечалось выше, в пределах pH =4-нЮ скорость коррозии зависит только от скорости диффузии кислорода к доступным катодным поверхностям. Площадь поверхности катода практически не имеет значения. Это показали эксперименты Уитмена и Расселла [101. Образцы стали, на /4 покрытые медью, выдерживали в водопроводной воде в Кембридже. Общая потеря массы этих образцов оказалась одинаковой с потерей массы контрольных (не медненых) образцов. Весь кислород, достигший поверх-  [c.106]

Добавление к чистому железу от нескольких десятых до одного процента меди умеренно повышает скорость коррозии в кислотах. Однако в присутствии фосфора или серы, которые обычно содержатся в промышленной стали, медь нейтрализует ускоряющее влияние этих элементов. Поэтому стали, содержащие медь, в неокислительных кислотах обычно корродируют в меньшей степени, чем стали, не содержащие меди 142, 43]. Судя по данным табл. 6.4, 0,1 % Си снижает коррозию сплава, содержащего 0,03 % Р или 0,02 % S в 4 % (Na l + НС1), но этот эф кт не наблюдается для фосфорсодержащего сплава при воздействии лимонной кислоты. Добавка 0,25 % Си к низколегированной стали обусловливает снижение скорости коррозии от 1,1 до 0,8 мм/год в растворе 0,5 % уксусной кислоты и 5 % Na l, насыщенном сероводородом при 25 °С [44]. Эти специфические соотношения применимы только к конкретным составам- и экспериментальным условиям — они не являются общей закономерностью. Сталь, включающая несколько десятых процента меди, более коррозионноустойчива в атмосфере, но не имеет преимуществ перед сталью, не содержащей меди, в природных водах или в почве, где скорость коррозии контролируется диффузией кислорода.  [c.126]


Смотреть страницы где упоминается термин Скорость коррозии, Скорость общей : [c.348]    [c.12]    [c.17]    [c.108]    [c.220]    [c.229]    [c.346]    [c.165]    [c.79]    [c.12]    [c.297]    [c.361]   
Ингибиторы коррозии (1977) -- [ c.0 ]



ПОИСК



Коррозия коррозии, Скорость общей

Коррозия коррозии, Скорость общей

Коррозия скорости

Скорость общей коррозии

Скорость общей коррозии



© 2025 Mash-xxl.info Реклама на сайте