Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие генерации амплитудное

Принцип действия. Для осуществления лазерной генерации в режиме самовозбуждения необходимо, как известно, обеспечить 1) амплитудное условие генерации, т.е. создать усиление в активной среде, достаточное для компенсации всех видов потерь 2) фазовое условие генерации, т.е. реализовать положительную обратную связь за счет использования оптических резонаторов либо самопроизвольно записывающихся объемных фазовых решеток в нелинейной среде 3) затравочное шумовое излучение, из которого развивается генерация. В традиционных лазерах усиление возникает в процессах вынужденного излучения в активной среде с инверсной населенностью. При пороговом значении накачки усиление света компенсирует его потери  [c.9]


Амплитудное условие генерации имеет вид  [c.129]

В случае генератора с замкнутым линейным резонатором существуют три фактора, вызывающие частотное рассогласование обращенной и падающей волн. Два первых связаны с амплитудным условием генерации и отражают возможный сложный состав спектрального контура усиления, третий связан с фазовым условием генерации, которое для замкнутых резонаторов может быть выполнено не для всех произвольных частот. Рассмотрим эти факторы более детально. Если среда обладает смешанным типом нелинейного отклика, таким, что динамическая решетка рассогласована относительно интерференционной картины на угол, близкий, но не равный тг/2, то максимум контуров усиления и коэффициента отражения обращенной волны сдвигаются либо в положительную, либо в отрицательную сторону в зависимости от знака константы локальной нелинейности. Их частотное положение соответствует такой скорости движения решетки, при которой суммарный нелинейный отклик вновь становится чисто нелокальным.  [c.153]

Полученные зависимости были исследованы для случая строгого вырождения по частоте и чисто локального нелинейного отклика. Два соображения служат оправданием подхода. Во-первых, для резонатора с одним обычным и другим обращающим зеркалами фазовое условие не накладывает ограничений на соотношение длины резонатора и частоты накачки [6, 7]. Во-вторых, для среды с локальным откликом любое частотное рассогласование сигнальной волны и волны накачки ведет лишь к уменьшению коэффициента отражения обращенной волны ( 3.3). Поэтому ни фазовое, ни амплитудное условия генерации не дают причин для отстройки генерационной волны по частоте от частоты волн накачки.  [c.175]

Условие генерации, определяемое уравнением (3.8.5), означает, что волна при возвратно-поступательном движении внутри резонатора длиной L должна, проходя путь 21, возвращаться к исходной плоскости с той же амплитудой и фазой, измененной на величину, кратную 2п. Амплитудное условие генерации, таким образом, имеет вид  [c.194]

Как в мягком, так и в жестком режимах при выполнении условия (7.2.8) частота колебаний не зависит от амплитуды накачки. При невыполнении (7.2.8) появляется зависимость частоты генерации от амплитуды накачки. Область существования параметрической генерации ограничена как со стороны малых амплитуд накачки ( порог ), так и со стороны больших амплитуд Л ( потолок ). Существование порога обусловлено необходимостью для генерации полной компенсации потерь в системе за счет параметрического вложения энергии. Наличие потолка связано с расстройкой парциальных частот при больших амплитудах накачки из-за нелинейной реактивности в системе. При жестком режиме возбуждения системы колебания возникают при наличии начального толчка, достаточного для перехода через нижнюю неустойчивую ветвь амплитудной характеристики (см. рис. 7.4). Из рис. 7.6 видно, что в жестком режиме параметрические коле-  [c.264]


Рассмотрим теперь поведение автоколебательной системы с двумя степенями свободы при изменении парциальной частоты первого контура. При частоте VJ< V2 в системе существует гармоническое колебание с частотой 1, близкой к v . При увеличении VI система входит в область, где возможно существование колебаний как частоты 2, так и частоты 2. Эта область носит название области затягивания частоты. В области затягивания режим генерации зависит от предыстории. Если система вошла в нее со стороны малых VI (см. рис. 7.12), то в ней будут существовать колебания с частотой 2 и амплитудой А . При дальнейшем увеличении VI система при VI = VII скачком перейдет в режим генерации колебаний с частотой 2 и амплитудой А . Если система входит в область затягивания со стороны больших V2, то в ней происходят колебания с частотой 2 и амплитудой А. . Переход в режим ( ц Л ) наступает при Vl2, значительно меньшей VJJ. Частоты VJl и v 2, определяющие границы области затягивания, можно найти из условий нарушения устойчивости соответствующих колебаний. Различаются частотные и амплитудные условия устойчивости. Частотные условия устойчивости нарушаются при частотах, на которых кривая = /(v1) имеет вертикальную касательную. Амплитудная неустойчивость возникает при нарушении условий (7.5.7) или (7.5.9). Пусть при некоторой частоте VI в системе выполняются условия (7.5.6) и (7.5.7). При увеличении VI частота также увеличивается и приближается к V2. При этом правая часть (7.5.6) растет и Ах уменьшается. Что касается правой части (7.5.7), то она уменьшается, а левая часть (7.5.7) растет. Наконец, при некотором V, неравенство (7.5.7) изменит знак. Вклад энергии на частоте а станет больше потерь  [c.276]

Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]


Контроль и калибровка К. с. д. необходимы для поддержания стабильных условий работы и абс. привязки результатов координатных и амплитудных измерений (автоматич. контроль тока в магнитах, темп-ры, состава и давления газа в газоразрядных детекторах, напряжения иитания детекторов и др.). Для калибровки спектрометрич. каналов используются эталонные радионуклиды, светодиоды и лазеры (калибровка фотоумножителей), прецизионные генераторы импульсов. В ряде К. с. д. предусмотрен периодич. контроль стабильности триггера и эффективности фильтрации данных путём генерации искусств. событий. Примеры крупномасштабных К. с. д. ИСТРА и ГЕЛИОС показаны на рис. 1 и 2.  [c.425]

Генератор должен возбуждать на забое заполненной жидкостью скважины достаточно высокоамплитудные колебания давления в диапазоне частот 20-300 Гц с возможностью регуляции частоты и настройки на избирательные частоты объекта. Частоты и амплитудный режим генерации должны быть стабильными и слабо зависеть от внешних условий и степени износа узлов генератора. В конструкциях генераторов необходимо исключить подвижные механические узлы, как наиболее подверженные износу, в особенности в условиях загрязненности и агрессивности жидкой среды, сильно уменьшающие их общий моторесурс.  [c.279]


Смотреть страницы где упоминается термин Условие генерации амплитудное : [c.191]    [c.430]   
Лазеры на гетероструктурах ТОм 1 (1981) -- [ c.194 , c.195 ]



ПОИСК



Генерация

Генерация условия

Шум амплитудный



© 2025 Mash-xxl.info Реклама на сайте