Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам проволока

Вольфрам (проволока диаметром 0,04...0,1 мм) ВА-1-Т (ГОСТ 18903-73 ( в ред. 1987 г.)) ЭЭО ка вырезных станках деталей из любых электропроводных материалов при необходимости получения реза шириной менее 0,12...0,15 мм  [c.732]

Рис. 7.28. Вольфрамовый излучатель лампы типа черное тело. а — смонтированная трубка б — вид вдоль трубки в — способ крепления концов вводов. 1 — связка тонких вольфрамовых проволок 2 — танталовая диафрагма диаметром 1 мм 3—-вольфрам толщиной 0,025 мм 4 — стыки плотно прижимаются в указанных местах 5 — вольфрам толщиной 0,04 мм. Рис. 7.28. Вольфрамовый излучатель <a href="/info/3846">лампы типа черное тело</a>. а — смонтированная трубка б — вид вдоль трубки в — способ крепления концов вводов. 1 — связка тонких <a href="/info/62988">вольфрамовых проволок</a> 2 — танталовая диафрагма диаметром 1 мм 3—-вольфрам толщиной 0,025 мм 4 — стыки плотно прижимаются в указанных местах 5 — вольфрам толщиной 0,04 мм.

При 20 С рений обладает хорошей пластичностью, позволяющей прокатывать, ковать и подвергать его волочению. Из него можно изготовлять фольгу толщиной 0,025 мм и проволоку диаметром 0,008 мм. При деформировании он упрочняется более интенсивно, чем другие металлы в 3,5 раза больше, чем вольфрам и молибден.  [c.144]

Применение чистого вольфрама. Вольфрам в виде проволоки, листов и различных кованых деталей применяют в производстве электроламп, рентгеновской аппаратуры, высоковакуумных усилителей, выпрямителей высокого напряжения, газоразрядных трубок и в радиотехнике и пр.  [c.453]

Молибден широко применяют в электровакуумной технике при менее высоких температурах, чем вольфрам накаливаемые детали из молибдена должны работать в вакууме, в инертном газе или в восстановительной атмосфере. Характеристики молибдена приведены в табл. 7-1 и на рис, 7-26. Механическая прочность молибдена в очень большой степени зависит от механической обработки материала, вида изделия, диаметра стержней или проволоки и последующей термообработки. Предел прочности при растяжении молибдена — от 350 до 2500 МПа, а относительное удлинение перед разрывом от 2 до 55 %. Плотность молибдена почти в два раза меньше, чем вольфрама. В электровакуумной технике наиболее распространены марки молибдена МЧ (молибден чистый) и МК (молибден с кремниевой присадкой). Последний обладает повышенной механической прочностью при высоких температурах. Молибден применяется в качестве материала для электрических контактов.  [c.215]

Некоторые интересные особенности механической связи в системе латунь — вольфрам были отмечены Беннетом и др. [47]. Прочность композитов составляла около 95% от значения, рассчитанного по правилу смеси. Однако наблюдался неожиданный эффект — образование нескольких шеек на небольших расстояниях друг от друга по длине проволоки, в результате чего полное удлинение было больше, чем у проволоки, испытанной вне композита. Объяснить это явление стеснением проволоки матрицей нельзя, так как образование шеек должно было приводить в этом случае к отделению проволоки от матрицы и расслоению композита из-за слабой связи. Множественное образование шеек было объяснено местным наклепом матрицы вблизи шейки на вольфрамовой проволоке. Наклепанная матрица разгружает проволоку до тех пор, пока несущая способность композита в данном месте не превысит несущую способность любого другого участка композита. Тогда деформация в данном месте прекращается и смещается вдоль проволоки в другое место. В пользу этой интерпретации свидетельствует то, что удлинение композита, составляющее 5— 10% при содержании вольфрама менее 5 об.%, уменьшается с ростом содержания последнего и при 20 об.% вольфрама достигает значений, примерно равных удлинению проволоки вне композита. При более высоком объемном содержании вольфрама уменьшается количество матрицы, способной подвергаться упрочнению и разгружать проволоку. ,  [c.81]


Модель поведения композитов при усталостном нагружении во многом зависит от вида нагружения [3], природы составляющих и геометрии композита. Исследование серебряных композитов, армированных вольфрамом и сталью, при усталостном нагружении растяжение — растяжение показало, что усталостная прочность таких композитов заметно увеличивается с ростом содержания упрочнителя [59]. В системе серебро — вольфрам, в отличие от системы серебро — сталь, не было обнаружено трещин на поверхности раздела. Форсит и др. [26] также отмечали, что введение вольфрамовой и стальной проволоки в алюминиевую матрицу повышает усталостную прочность.  [c.251]

Предварительные исследования по совместимости показали, что между волокном и матрицей в тугоплавких армированных волокнами жаропрочных сплавах возникают реакции легирования [50]. Также показано, что если реакции легирования возникают между матрицей и волокном, то свойства композита улучшаются. В результате был осуществлен ряд исследований для подбора пар материалов волокно — матрица, наиболее совместимых друг с другом. В [51] исследованы свойства длительной прочности при повышенных температурах (1093 и 1204 °С) для четырех проволок Т7М (молибден, 0,5% Т1, 0,08% 2г, 0,015% С) ЗВ (вольфрам, 3% рения) КР (вольфрам, 1% тория) и 21808 (промышленный вольфрам). Обнаружено, что проволоки 21808 и ЗВ были более совместимы с исследованными никелевыми сплавами, чем проволоки NF или Т2М. Овойства длительной прочности проволок в отсутствие материала матрицы были такие- же.  [c.277]

Поэтому авторами работы [51] был выбран один никелевый сплав (сплав 3) и две проволоки (промышленный вольфрам 218 С8 и вольфрам NF с 1% тория), и эти комбинации предложены в качестве лучших по длительной прочности для высокотемпературных приложений. Длительная прочность этих композитов сравнивалась с длительной прочностью проволоки, испытанной в вакууме. Обычное содержание волокна в экспериментах было от 40 до 70%, и поэтому предполагалось, что нагрузка, приложенная  [c.302]

ВОЛОК. Образцы для испытаний диаметром 0,25 дюйма содержали 13 или 20% объема волокон и были составлены из четырех или пяти параллельных проволок (каждая диаметром 0,05 дюйм). По-видимому, проволоки из сплава вольфрам — 5% рения обладают более хорошими свойствами по сравнению с другими тугоплавкими. металлами. Если построить графики удельной длительной прочности для различных материалов (рис. 26), то видно, что только комбинация с вольфрамом, к которому добавлено 5% рения, дает существенное улучшение свойств композита.  [c.305]

Предварительная стабилизация вольфрам-молибденовых термопар из проволоки диаметром 0,5 мм, проводимая в водороде в течение 6 ч при 1100° С, позволяет контролировать без изменения термоэлектродвижущей силы в течение 250 ч температуру образца, нагреваемого в вакууме или в защитной атмосфере инертного газа.  [c.78]

Недостатками системы никель—вольфрам является ее нестабильность при высоких температурах. Указанные два компонента образуют систему с ограниченной растворимостью. Никелевый твердый раствор насыщается до равновесной концентрации 35% (по массе) вольфрама, а диффузионное проникновение десятых долей процента никеля в вольфрамовую проволоку снижает температуру рекристаллизации последней примерно на 200°, что одновременно приводит к снижению свойств таких материалов.  [c.30]

Дисперсионно-упрочненный вольфрам до последнего времени выпускали в виде прутков, проволоки или ленты шириной до 100 мм. Освоение производства вольфрама с дисперсной фазой окиси тория в виде листов больших размеров потребовало длительной экспериментальной работы. Перед специалистами стоит важная задача разработки сплава вольфрама, пластичного при комнатной температуре. Она может быть решена регулированием размера зерен дисперсными окисными частицами, легирующими присадками и т. п.  [c.88]

В производстве источников света вольфрам применяется главным образом в виде проволок, прутков и прокатанной жести. Отечественные марки вольфрама по ТУ 48-9-45-67 (ВА, ВМ, ВТ-7, ВТ-15, ВЧ, ВРН и др.) различаются по химическому составу и назначению.  [c.29]

Для раскаленных вольфрамовых проволок особенно опасны пары воды, которые диссоциируют и способствуют образованию вольфрамового ангидрида. Последний после конденсации на стенках колбы восстанавливается освободившимся водородом, вновь образуя вольфрам и пары воды. В плохо откачанных лампах накаливания этот процесс может за короткое время привести к почернению стеклянной колбы и разрушению нити.  [c.37]


Тугоплавкие металлы — вольфрам и молибден — чаще всего применяются в виде проволок.  [c.466]

Термопары вольфрам-рений успешно используются в инертном газе высокой чистоты, в водороде, а также в вакууме с ограничениями, указанными выше. Для стабилизации размеров зерна рекомендуется предвари тельный отжиг новой термопарной проволоки. Это делается в инертной атмосфере при температуре 2100 °С в течение от одного часа для и — 3 % Не до нескольких минут для У — 25% Не. Такая процедура отжига снижает также скорость образования интерметаллической о-фазы в сплаве Ш — 25% Не, которая в противном случае выпадает в части проволоки, находящейся длительное время при температурах от 800 до 1300 °С. Градуировочная таблица зависимости термо-э.д.с. от температуры была предложена [2], но пока формально не утверждена. Одно из важных применений термопар водвф-рам-рений будет рассмотрено ниже и состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.  [c.292]

Вольфрам — чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления (3380°С). Вольфрам получают из руд различного состава главным образом из вольфрамита пРе Л 04хгаМп Л 04 и шеелита Са 04 промежуточным продуктом является вольфрамовая кислота Н21У04, из которой путем восстановления водородом при нагреве до 900 °С получают металлический вольфрам в виде мелкого порошка с размером зёрен 1...7 мкм. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.  [c.28]

Для вольфрама характерна слабая связь между отдельными кристаллами, поэтому сравнительно толстые вольфрамовые изделия хрупки. При механической обработке ковкой и волочением вольфрам приобретает волокнистую структуру этим объясняется гибкость тонких вольфрамовых нитей. При уменьшении толщины вольфрамовой проволоки иОЗраСТабт И сс прслсл прочности при растяжении Стр (примерно от 500—600 МПа для стержней диаметром 5 мм до 3000—4000 МПа для тонких нитей удлинение при разрыве АШ таких нитей — около 4%).  [c.28]

Платина—вольфрам. Затвердевание сплавов Pt с W сопровождается пери-тектической реакцией, протекаюн1ем при 2460°С (фиг. 29). Сплапы Pt с W имеют довольно большую термоэлектродвижущую силу в паре с платиной. Сплавы, содержащие до 7—87о W, пластичны, куются в горячем состоянии, прокатываются и протягиваются в проволоку на холоду. Сплавы Pt с W применяются для электрических контактов, частей приборов и наконечников перьев.  [c.417]

Вольфрам. Обладая наиболее высокой среди тугоплавких металлов температурой плавления (3395° С) вольфрам отличается своеобразной структурой в виде вытянутых в продольном направлении к эисталлов (для проволоки, ленты). Получению прочности и формоустойчивости металла при высоких температурах способствуют вводимые присадки —  [c.300]

Описан метод получения композитной оболочки на стальном каркасе путем намотки вольфрамовой или молибденовой проволоки с последующим насыщением тугоплавкими металлами, такими как вольфрам, молибден, никель, из жидкой фазы транспортирующего легкоплавкого металла. Полученные композитные оболочки способны работать при повышенных температурах в агрессивных средах. Лит. — в назв., ил. — 3.  [c.260]

Одно из первых систематических исследований типов поверхностей раздела было проведено Петрашеком и Уитоном [29]. Авторы расширили работу Джеха и др. [22] по системе медь — вольфрам, исследовав ряд систем медный сплав — вольфрам. J oTH влияние легирующих элементов на структуру вольфрамовой -проволоки осложняло интерпретацию результатов, авторами были выделены три типа поверхностей раздела между легированной матрицей и упрочнителем. Они соответствуют случаям, когда  [c.14]

Другой подход к проблеме растворимости был использован Брентналлом и др. [7] при исследовании системы ниобий — вольфрам. Максимальное количество вольфрама, которое может быть введено в обычные ниобиевые сплавы, ограничено 20—30% из-за снижения ковкости сплава. Композитный материал из ниобиевой матрицы с вольфрамовой проволокой теряет стабильность вследствие растворения проволоки. Однако продукты растворения представляют собой высокопрочные сплавы системы Nb — W, которые обычно являются нековкими. Образование этих сплавов компенсирует потерю прочности, вызванную растворением вольфрамовой проволоки. На рис. 4 показано влияние выдержки (до 100 ч) при 1477 К на прочность при растяжении Nb-сплава с 24 об.% проволоки (W с добавкой 37о Re). Имеются два фактора, снижающие прочность. Первый из них — это уменьшение сечения вольфрамовой проволоки из-за растворения, второй— возврат, приводящий к разупрочнению. Прочность проволоки уменьшается с 119 кГ/мм в исходном состоянии до 77 кГ/мм после выдержки 100 ч при 1477 К. В то же время прочность композита не изменяется. Предполагается, что постоянная величина прочности композита обеспечивается образованием высокопрочных Nb — W-спла-вов. На рис. 5 сопоставлены микроструктуры вблизи места разрушения при испытании на растяжение образцов в исходном состоянии и после ЮО-часовой выдержки при 1477 К. Матрица становится менее пластичной после отжига из-за большого количества растворившегося в ней вольфрама.  [c.94]

В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]


Система медь—вольфрам является примером композита, в котором незначительные. изменения характеристик поверхности приводят к заметным изменениям собственной прочности упрочнителя. Эти незначительные изменения связаны с переходом поверхностно-активного элемента — кобальта — в вольф рамовую проволоку и с влиянием свойств данного элемента. Другим медным сплавам, составляющим с вольфрамом систему второго класса, не свойственно столь значительное изменение характеристик упрочнителя. I  [c.180]

Изломы образцов, испытанных при 1477 К иод углами 90 и 45°, показаны на рис. 15. При обеих ориентациях разрушение происходит по поверхности раздела, и, следовательно, прочность при внеосном нагружении определяется прочностью поверхности раздела. С ростом прочности поверхности раздела прочность композита должна увеличиваться, и разрушение должно происходить не по поверхности раздела, а по матрице или по проволоке. Одним из возможных способов упрочнения поверхности раздела в композите ниобий—вольфрам является термическая обработка, усиливающая взаимную диффузию веществ проволоки и матрицы. С этой целью ряд образцов перед испытанием на растяжение при 1477 К подвергали предварительному отжигу при той же темпе ратуре. Влияние предварительного отжига на прочность  [c.204]

Хьюз и Резерфорд [38], а также Резерфорд [70], исследуя характеристики микродеформации для оценки параметров пластической деформации при растяжении системы медь—вольфрам, ус-тановцли, что пределы микротекучести и текучести линейно зависят от объемной доли упрочнителя — вольфрамовой проволоки (рис. 15). Кроме того, было показано, что значения предела текучести и сопротивления движению дислокаций увеличиваются с ростом предварительной деформации и качественно согласуются с дислокационной моделью для медной матрицы [38]. Исследование микродеформаций в сочетании с трансмиссионной электронной микроскопией является особенно ценным, поскольку таким способом может быть получена информация о роли поверхности раздела как барьера для движения дислокаций либо как источника или стока дислокаций.  [c.247]

Вольфрам (W > 99,9) [ТУВМ 7-154—54]. проволока, фольга  [c.13]

Большим тормозом в развитии отечественной электровакуумной промышленности в течение многих лет являлась зависимость ее от ввоза из-за границы необходимых для изготовления вакуумных приборов редких металлов (молибден, вольфрам, тантал), производство которых в СССР тогда еше налажено не было. Вопрос о производстве советского вольфрама и молибдена впервые был поставлен в 1921 г. в решениях VIII Всероссийского электротехнического съезда, созванного по инициативе В. И. Ленина для обсуждения проблемы электрификации СССР ( План ГОЭЛРО ), но лишь с 1929 г. отечественная промышленность стала изготовлять высококачественную вольфрамовую проволоку и другие необходимые для вакуумного производства металлы. Эта техническая победа полностью освободила советскую электровакуумную промышленность от иностранной зависимости на столь важном участке и открыла пути к дальнейшему ее самостоятельному росту и техническому совершенствованию.  [c.356]

Вольфрам распространен в производстве твердых сплавов, проволоки для псточников света и т. д. Основная же масса вольфрама (до 80—85%) применяется для легирования стали и сплавов в виде ферровольфрама.  [c.179]

Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами А — азот (только в высоколегированных проволоках) Б — ниобий В — вольфрам Г — марганец Д — медь М — молибден Н — никель С — кремний Т — титан Ф — ванадий X — хром Ц — цирконий Ю — алюминий. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставляют. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную частоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на более низкое содержание серы и фосфора по сравнению с их содержанием в проволоке марки Св-08А.  [c.325]

Воздушный транспорт <В 64 ангары для стоянки Е 04 FI 6/44 системы регулирования полетов G 08 G 5/00-5/06) Вокзалы, общее устройство В 61 В 1/00 Волновая энергия, использование [В 29 С вулканизация изделий 35/08-35/10 (соединение 65/14-65/16 тиснение или гофрирование поверхностей 59/16) пластических материалов , для переплавки металлов С 22 В 9/22 для полимеризации С 08 F 2/46 для получения привитых сополимеров на волокнах, нитях, тканях или т. п. D 06 М 14/18-14/34 в химических или физических процессах В 01 J 19/08] Волокна [использование <для изготовления гибких труб F 16 L 11/02 в сплавах цветных металлов С 22 С 1/09 в фильтрах В 01 D 39/02-39/06) металлические в сплавах С 22 С 1/09 оптические в качестве активной среды лазеров Н 01 S 3/07] Волокнистые материалы [использование для изготовления приводных ремней F 16 G 1/04, 5/08 складывание В 65 Н 45/00 сушильные устройства F 26 В 13/00] Волоконная оптика <С 02 В 6/00 химический состав и изготовление оптического стекловолокна С 03 (В 37/023, 31j027, С 13/04) Волочение [В 21 С листового металла, проволоки, сортовой стали, труб 1/00-1/30 устройства для правки проволоки, конструктивно сопряженные с волочильными машинами 19/00) как способ изготовления топливных элементов реакторов G 21 С 21/10] Волочильные станы В 21 С <1/02-1/30 комбинированные с устройствами для очистки металлических изделий 43/02 рабочие инструменты для них 3/00-3/18) Вольтова дуга, использование для нагрева печей F 27 D 11/08 Вольфрам С 22 легированные стали, содержащие вольфрам, С 38/12-38/60 получение и рафинирование В 34/36 сплавы на его основе С 27/04)  [c.59]

Как было указано выше, вводимые в вольфрам присадки и примеси регулируют в процессе рекристаллизации рост, форму, взаимное расположение и сцеплеиие кристаллов. Так, ториевая присадка в вольфраме ВТ (1,0% ThO) понижает скорость рекристаллизации и препятствует росту кристаллов в поперечном направлении, уменьшая тем самым хрупкость проволоки. Присадка окиси тория вводится в вольфрам еще и для активации поверхности катода. Однако вольфрам с ториевой присадкой имеет неудовлетворительную формоустойчивость содержание окиси тория более 2% понижает механические параметры вольфрама,  [c.34]

Алюминиевая присадка в вольфраме ВА (0,45% Si02, 0,45% КС1, 0,03% AI2O3) способствует повышению температуры рекристаллизации вольфрамовой проволоки, вольфрам ВА прочнее и более формоустойчив, чем вольфрам ВК- Наличие окиси кремния обеспечивает создание крупнокристаллической структуры в рекристаллизо-ванной проволоке.  [c.35]

Низкое качество исходной проволоки несовпадение направлений вращения первичной и вторичной спирализацни при изготовлении спиралей недостаточное закрепление формы спиралей в процессе отжига изменения структуры вольфрама из-за загрязнения углеродом, железом никелем неправильный монтаж—спираль недостаточно натянута неправильное соотношение диаметров проволоки и керна неправильный отжиг ламп — процесс собирательной рекристаллизации не успел закончиться и вольфрам имеет смешанную структуру Резкое снятие внутренних напряжений и причины, изложенные в п. 5 См. п. 5  [c.290]



Смотреть страницы где упоминается термин Вольфрам проволока : [c.331]    [c.124]    [c.12]    [c.80]    [c.290]    [c.296]    [c.302]    [c.213]    [c.14]    [c.313]    [c.245]    [c.6]    [c.263]    [c.21]    [c.201]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.255 ]



ПОИСК



Вольфрам



© 2025 Mash-xxl.info Реклама на сайте