Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамический адиабатный

Термодинамическую систему, которая не может обмениваться теплотой с окружающей средой, называют т е п-ло изолированной или адиабатной. Примером адиабатной системы является газ, находящийся в сосуде, стенки которого покрыты идеальной тепловой изоляцией, исключающей теплообмен между заключенным в сосуде газом  [c.7]

Основные термодинамические процессы водяного пара. Для анализа работы паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяного пара, либо с помощью Л, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.  [c.38]


Из определения политропного процесса следует, что основные термодинамические процессы — изохорный, изобарный, изотермический и адиабатный, если они протекают при постоянной теплоемкости, являются частными случаями политропного процесса.  [c.98]

Положим, имеется изолированная адиабатная система, в которой происходят термодинамические процессы. Если в этой изолированной системе протекают только обратимые процессы, то для нее можно применить уравнение (8-9)  [c.123]

Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

Термодинамическая эффективность процесса энергоразделения в вихревых трубах, полученная на основе физических представлений о сущности явления, невелика. Это обусловлено существенной необратимостью самого процесса, являющейся причиной низких значений адиабатного КПД вихревых труб. В практике применения вихревых труб для оценки термодинамического совершенства используют температурный и адиабатный (2.17) коэффициенты полезного действия.  [c.185]

Термодинамическое совершенство процесса оценивается по адиабатному (ф ) и эксергетическому ) КПД  [c.238]

Термодинамическое равновесие в двухфазном адиабатном потоке внутри пористого каркаса объясняется чрезвычайно высокой интенсивностью передачи теплоты от жидкости к пару. Развитая поверхность раздела фаз жидкость - пар обеспечивает кратчайшее расстояние передачи теплоты из обволакивающей частицы металла жидкостной микропленки к ее поверхности, в результате чего испарение идет без измеряемой ра> ности температур между жидкостью и паром, а двухфазная смесь находится в состоянии термодинамического равновесия.  [c.80]

Адиабатным процессом называется процесс, происходящий в термодинамической системе при отсутствии теплообмена с окружающими телами, т. е. при условии Q = 0.  [c.99]


Адиабатная термодинамическая система — термодинамическая система, которая не может обмениваться теплотой с други.ми системами.  [c.83]

Адиабатный процесс — термодинамический процесс, в котором система не обменивается теплотой с окружающей средой.  [c.85]

Поскольку локальная энтропия а (единицы массы или р5 — единицы объема) зависит от термодинамических параметров а, (г, t) так же, как и при полном равновесии, то при необратимом процессе в адиабатной системе скорость возникновения энтропии в единице объема (производство энтропии) равна  [c.9]

Положение о существовании у всякой термодинамической системы новой однозначной функции состояния—энтропии S, которая при адиабатных равновесных процессах не изменяется, и составляет содержание второго начала термодинамики для равновесных процессов.  [c.58]

То, что энтропия при равновесных процессах в адиабатных системах возрастает, а не убывает, связано с условием, определяющим положительность термодинамической температуры. При другом дополнительном условии, приводящем к 7 <0 К, мы имели бы из (3.53) для неравновесных процессов в адиабатно изолированных (обычных) системах не закон возрастания, а закон убывания энтропии.  [c.75]

Таким образом, закон возрастания энтропии содержит в себе не только объективную сторону (односторонность естественных процессов), но и субъективный момент —знак термодинамической температуры, который придает объективной стороне лишь определенное выражение, не меняя ее существа. Отсюда, между прочим, следует, что нельзя доказывать положительность термодинамической температуры, исходя из закона возрастания энтропии, так как формулировка второго начала для необратимых процессов в адиабатно замкнутых (обычных) системах в виде закона возрастания энтропии уже предполагает, что термодинамическая температура положительна.  [c.75]

Если принять отрицательную термодинамическую температуру (это соответствовало бы тому, что при сообщении теплоты обычному телу при постоянных внешних параметрах его температура понижается), то второе начало для нестатических процессов состояло бы в утверждении убыли энтропии системы при адиабатных процессах. Тогда вместо неравенства (3.62) мы имели бы  [c.81]

В гл. 3 мы отмечали, что второе начало термодинамики устанавливает, во-первых, общую закономерность превращения теплоты в работу и, во-вторых, выражает специфические закономерности как обычных, так и необычных систем. Общая закономерность превращения теплоты в работу в обоих случаях систем состоит в том, что при таком превращении в замкнутом круговом процессе часть теплоты непременно отдается рабочим телом другим телам. Этот (первый) элемент компенсации, который в случае обычных систем совпадает со вторым элементом компенсации (изменением термодинамического состояния других тел), приводит к существованию энтропии у равновесной системы (см. 13). Отсюда следует, что второе начало, сформулированное Каратеодори, не изменяется вблизи каждого состояния любой термически однородной системы существуют такие состояния, которые недостижимы из него адиабатным путем. Это означает, что у всякой равновесной системы в состоянии с отрицательной абсолютной температурой (как и в случае обычных систем) существует энтропия как функция ее состояния  [c.142]

На основе такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных отклонений внутренних параметров от их равновесных значений, можно, пользуясь основным неравенством термодинамики (3.59) для нестатических процессов, получить общие (т. е. для любых систем) условия термодинамического равновесия и устойчивости. При этом, поскольку состояние термодинамических систем определяется не только механическими параметрами, но и специально термодинамическими (температура, энтропия и др.) и другими параметрами, вместо одного общего условия равновесия для механических систем (6.2) для термодинамических систем их будет несколько в зависимости от отношения системы к внешним телам (адиабатная система, изотермическая система и др.).  [c.100]


Если термодинамическая система заключена в абсолютно жесткую и в то же время непроницаемую для теплоты (адиабатную) оболочку, то она изолирована от внешней среды и, следовательно, не может обмениваться с окружающей средой энергией ни в форме теплоты, ни в форме механической работы. В этом случае на основании закона о сохранении и превращении энергии можно утверждать, что запас внутренней энергии такой изолированной системы постоянен  [c.40]

Если термодинамическая система находится в свободно расширяющейся адиабатной оболочке, то вследствие увеличения объема система воздействует на окружающую среду, преодолевая внешнее давление, или, наоборот, уменьшает свой объем под влиянием внешнего давления. При расширении системы ею производится работа вследствие убыли внутренней энергии системы, а при сжатии работа внешних сил идет на увеличение внутренней энергии системы. В термодинамике принято работу, производимую системой, считать положительной, а работу, расходуемую окружающей средой на сжатие системы, — отрицательной.  [c.41]

На рис. 7.4 представлены основные газовые термодинамические процессы в газах. За начало принята точка О н через нее кривые, представляющие исследуемые процессы. Наиболее просто на Т — s-диаграмме представляются изотермический и адиабатный процессы.  [c.84]

Совокупность рабочих процессов в детандере,как и в компрессоре, не представляет собой замкнутый термодинамический процесс-цикл. Наиболее выгодным, с точки зрения получения работы, будет изотермический процесс /-2. Однако изотермический процесс расширения трудно осуществить, и процессы в детандерах близки к адиабатным.  [c.150]

Впрыскиваемое топливо поступает в камеру сгорания или специальные предкамеры. Процесс сгорания идет вначале с повышением давления, а затем при постоянном давлении. Осуществление такого подвода теплоты характерно для двигателей, работающих по смешанному циклу. При термодинамическом исследовании таких циклов рассматривается цикл, состоящий из следующих процессов (рис. 12.11) а-с — адиабатное сжатие с-2 — изохорный подвод теплоты г-г — изобарный подвод теплоты г -е — адиабатное расширение е-а — изохорный отвод теплоты.  [c.160]

Величина, на которую это снижение превышает работу, производимую над окружающей средой вне потока, является мерой необратимости любого адиабатного термодинамического процесса между  [c.188]

Этот же вывод можно получить на основе анализа температурных полей при теплоотдаче. При небольшой скорости движения теплоносителя теплообмен потока со стенкой возможен при условии Тf ф При большой скорости течения газа и Рг = 1 теплообмен возможен при Т) Ф Т , а в общем случае при Т ,. Поэтому при скоростях течения, когда разогрев газа в пограничном слое вследствие его торможения становится уже заметным, в формуле Ньютона для теплоотдачи термодинамическую температуру потока следует заменить на адиабатную температуру стенки. Обобщенная формула Ньютона имеет вид  [c.382]

Как мы уже указывали, автор в ряде случаев избегает строгого подхода к тем или иным термодинамическим понятиям. Например, по сути дела он не провел различия между понятиями равновесный и обратимый (процессы). Как известно, про--цесс является равновесным (квазистатическим), если он состоит из непрерывной совокупности равновесных состояний системы. Обратимый же процесс — это такой процесс с рассматриваемой системой, выполнив который она может вернуться в исходное состояние без изменений в ней самой и в системах, внешних по отношению к ней. В подавляющем большинстве случаев равновесные процессы являются обратимыми, однако можно привести пример, когда равновесный процесс не является обратимым. В описании политропных процессов автор отошел от общепринятого понимания понятия политропный процесс . В отличие от принятого в советской термодинамической литературе автор определяет политропный процесс как такой процесс с идеальным газом, который удовлетворяет условию pv = onst, в котором величина о лежит между единицей и величиной отношения pj . Поэтому изотермический, адиабатный и многие другие процессы не являются, по мнению автора, политропными. В указанном ограничении величины о и состоит отличие понимания политроп-ного процесса автором от принятого советскими термодинамиками.  [c.24]

При течении газа у поверхности какого-либо тела вследствие сил внутреннего трения происходит торможение потока, что вызывает увеличение температуры тела. Температура адиабатно изолированного тела, помещенного в поток газа, называется собственной, или равновесной. Собственную температуру можно определить неподвижным теплоизолированным термометром, находяш,имся в потоке перемещающейся жидкости. Термодинамическую температуру можно определить термометром, который перемещается вместе с газом. Разность между собственной и термодинамической температурой равна  [c.439]

Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]


Такой подход приводит лишь к односторонней и неполной оценке интегральной характеристики термодинамической эффективности процесса энергоразделения, так как не учитывается эффект подофева. Поэтому внутренний адиабатный КПД  [c.185]

Большие трудности возникают при теоретическом обосновании необходимой длины I камеры энергетического разделения. Проще эту задачу решить для прямоточных вихревых труб. Равновесное состояние, определяющее завершенность процесса энергоразделения, определяется в этом случае положением сечения трубы с адиабатным распределением термодинамических параметров. При вычислении расположения сечения с максимальным температурным эффектом энергоразделения в условиях достаточного уровня развития турбулентной структуры требуется найти число необходимых микрохолодильных циклов. Можно считать, что на участке трубы длиной в один калибр (// /,= 1) число циклов турбулентных перемещений равно частному от деления объема участка на среднестатистический объем турбулентного моля. Объем участка трубы  [c.186]

С ростом степени расширения воздуха в вихревых трубах эффект охлаждения снижается, что снижает температурную эффективность процесса регенарации. Эксергетический 1ШД с ростом степени регенерации неизменно падает (см. рис. 5.8). о связано с уменьшением части полезно используемого холода . В то же время адиабатный КПД растет (см. рис. 5.9). Такое противоречивое изменение величин, оценивающих термодинамическое совершенство схемы, несколько затрудняет возможность обоснованного выбора, наиболее эффективного с энергетической точки зрения режима работы. Для заданных значений Ру и выбор режима работы схемы следует осуществлять по максимальному значению.  [c.239]

Часто техническая необходимость применения вихревых труб для охлаждения связана с ограничениями по расходу сжатого воздуха, требующими минимизации диаметра вихревой трубы при сохранении ее термодинамических характеристик. Это приводит к противоречию, связанному с масштабным фактором. Его преодоление требует определенных усилий по совершенствованию процесса энергоразделения у маломасштабных вихревых труб. Методы интенсификации процесса энергоразделения в маломасштабных вихревых трубах за счет отсоса наиболее нагретых периферийных масс газа с периферии камеры энергоразделения [7, 8] и нестационарного выпуска горячего потока через дроссельное устройство позволили приблизить уровень их термодинамической эффективности (ф = 0,22) к 22%, в то время как адиабатная труба с диаметром d > 20 мм уже позволяла достигать 0,27, а неадиабатная коническая труба В.А. Сафонова давала ф = 0,3. Этот факт обусловил необходимость разработки новой конструкции вихревой трубы, особенность которой состояла в выполнении оребрения на внутренней поверхности камеры энергоразделения на части ее горячего конца [35]. Часть камеры энергоразделения, примыкающая к дросселю (рис. 6.9), была выполнена в виде тонкослойного пластинчатого теплообменника, набранного в виде пакета из штампованных теплопроводных пластин, чередующихся с герметизирующими прокладками, обеспечивающими необходимый шаг.  [c.292]

Измеренное с помощью игл давление в потоке внутр образца достаточно точно совпадает со значениями давления, рассчитанными по измеренным температурам в соответствующих поперечных сечениях. Такие результаты были получены во всем исследованном диапазоне удельных массовых расходов воды до 26 кг/ (м с), а также и для образцов из коррозионноч тойкой стали. Это свидетельствует о наличии термодинамического равновесия внутри адиабатного двухфазного потока в пористом металле.  [c.79]

Во всякой термодинамической системе (простой или сложной) возможны три процесса изотермический (Г= onst), адиабатный (bQ = 0) и политропный (С= onst). Число и характер других процессов зависят от природы систем.  [c.42]

Таким образом, функция F в переменных V а Т является характеристической функцией или термодинамическим потенциалом. Эта функция F=U—TS называется энергией Гельмгольца (свободной энергией). Как следует из (5.16), при изотермических процессах работа совершается системой не за счет убыли внутренней энергии U (как при адиабатных процессах), а за счет убыли функции F. В самом деле, из формулы (5.13) при 7 = onst находим  [c.104]

Это заключение Нернста подверглось критике Эйнштейна, который считал невозможным осуществление изотермического процесса D, поскольку при адиабатном сжатии тела в состоянии С оно при практически небольщом трении уйдет с кривой Г=0 К и будет сжиматься вдоль адиабагы СВ (абстракция об обратимых термодинамических процессах здесь невозможна) . Так что при достижении О К цикл Карно вырождается в совокупность двух слившихся адиабат и двух слившихся изотерм при прямом изотермическом процессе А В от теплоотдатчика берется количество теплоты 01, а при обратном процессе ЗА такое же количество теплоты Q2 ему отдается и к.п.д. такого цикла равен нулю.  [c.164]

В Физической энциклопедии (1988. Т. I. С. 360) приводится следующая формулировка принципа Каратеодори Вблизи любого состояния термодинамического равновесия и сколь уюдно близко к нему еу1цеетвуст состояние, в которое нельзя попасть при помоищ адиабатного nporie a . Показать ошибочность этой формулировки принципа Каратеодори.  [c.177]

Обратимый термодинамический цикл на 1 кг рабочего тела, изображенный на р—и-диаграмме (рис. 12.3), состоит из адиабатного сжатия, подвода к газу теплоты при v = onst, адиабатного расширения и отдачи газом теплоты при v = onst.  [c.154]

Обработка опытных данных по среднему коэффициенту теплоотдачи между воздухом и сферой в условиях вынужденного движения, выполненная Каванау в соответствии с формулой (11.29), позволила получить ф = 2,63. Опыты проводились в потоке газа при М = = 0,1 — 0,69 и Re = 1,75— 124. При обработке опытных данных коэффициент теплопроводности определялся по адиабатной температуре стенки, а остальные физические параметры — по термодинамической температуре потока. Определяющий размер — диаметр сферы.  [c.402]


Смотреть страницы где упоминается термин Термодинамический адиабатный : [c.186]    [c.102]    [c.121]    [c.84]    [c.378]   
Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.16 ]



ПОИСК



Принцип адиабатной недостижимости и второе начало для равновесных процессов. Энтропия и термодинамическая температура

Система термодинамическая адиабатная



© 2025 Mash-xxl.info Реклама на сайте