Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Гельмгольца по замкнутому контуру

Самым существенным следствием является теорема Гельмгольца, справедливая для баротропного течения в консервативных гравитационных полях (т. е. при = —УО). Эта теорема ([7], стр. 54 [ ] )), т. 1, стр. 149) утверждает инвариантность циркуляции Г= и с дс по любому замкнутому контуру, движущемуся вместе с жидкостью, т. е. во всякий момент времени состоящему из одних и тех же частиц жидкости. Следовательно, если в начальный момент жидкость находится в покое (например, вытекает из неподвижного резервуара) и если контур остается все время замкнутым, то циркуляция всегда должна равняться нулю. Это значит, что должен существовать локально однозначный скалярный потенциал скорости С/(х, f), т. е. такая скалярная функция точки, что  [c.21]


Движение жидкости, лишенной трения, с вращением частиц. Вихревые нити. Для изучения движений однородной, лишенной трения жидкости с вращением частиц воспользуемся опять теоремой Томсона о постоянстве циркуляции по замкнутому жидкому контуру. Из этой теоремы и из геометрических свойств ротации скорости (называемой также вихревым вектором) можно вывести известные теоремы Гельмгольца о вихревых движениях. Эти теоремы, касающиеся весьма важных геометрических и механических соотношений, имеющих место при движении жидкости с вращением частиц, были выведены самим Гельмгольцем несколько иным путем, а именно — на основе электродинамических представлений . Однако следствия, вытекающие из этих теорем, получаются простыми только в том случае, когда частицы жидкости, находящиеся во вращении, занимают область в виде нити, и вне этой области движение происходит без вращения частиц. В таком случае говорят о вихревых нитях. Важнейшие теоремы о вихревых нитях можно вывести из свойств окружающего их потенциального течения, не углубляясь при этом в детали движения жидкости с вращением частиц. Таким образом, мы должны вернуться  [c.107]

Первый интеграл, взятый по замкнутому контуру, равен нулю по теореме Гельмгольца (6). Следовательно, остается  [c.149]

Пусть (5.1 и — два произвольных замкнутых контура на поверхности трубки с одинаковым направлением обхода (уточним, что каждая кривая должна быть эквивалентна определяющей в смысле непрерывного преобразования, оставляющего кривую на поверхности трубки). Первая теорема Гельмгольца утверждает, что циркуляция по совпадает с циркуляцией по 6-2. Доказательство этой теоремы читатель может найти почти в любом курсе гидродинамики мы рекомендуем обратиться к книге Ламба [8], 145.  [c.71]

Но циркуляция по замкнутому контуру остается неизменной по теореме Томсона, следовательно, и интенсивность вихревой трубки остается постоянной с течением времени. Вторая теорема Гельмгольца таким образом доказана.  [c.59]

Возникновение циркуляции по замкнутому контуру или возникновение вихрей в условиях течения идеальной несжимаемой жидкости при массовых силах, обладающих потенциалом, невозможно, как следует из теоремы Гельмгольца.  [c.135]

Имея в виду дальнейшие гидродинамические приложения, подойдем к вопросу о многозначности потенциала в безвихревом движении еще иначе. Выделим из области течения жидкости чисто безвихревую часть, рассматривая поверхности тока, ограничивающие вихревые трубки, как твердые стенки. Поясним, что вблизи вихревых линий всегда имеются замкнутые линии тока, расположенные на поверхностях тока, отделяющих вихревые линии от окружающей их жидкости. В идеальной среде благодаря отсутствию треиия можно мысленно, нисколько не нарушая происходящего движения, заменять поверхности тока твердыми, непроницаемыми для движущейся среды поверхностями. Этот условный прием часто применяется при рассмотрении идеальных жидкостей или газов. При таком рассмотрении движения в жидкости уже не будет вихревых трубок, но зато сама область течения станет, вообще говоря, многосвязной ). Действительно, по второй теореме Гельмгольца вихревые трубки не могут заканчиваться в самой жидкости они образуют либо замкнутые трубки — вихревые кольца, либо опираются на граничные поверхности (твердые стенки, свободные поверхности раздела). Во всех этих случаях замкнутый контур, опоясывающий трубку, оставаясь в области безвихревого течения, не может быть непрерывным  [c.191]


В случае невязкой жидкости (v 0) окончательно получаем Г - 0. Это составляет утверждение теоремы В. Томсона о том, что циркуляция скорости по замкнутому контуру, который проведен через одни и те же частицы жидкости, в процессе движения есть величина постоянная. С помощью теоремы В. Томсона легко доказываются второй и третий законы Гельмгольца.  [c.37]

Пользуясь теоремой Томсона, легко обнаружить знаменитый принцип Гельмгольца сохранения вихрей. Вообразим (фиг. 17) в начальный момент времени некоторую вихрезую нить М и проведем на ее поверхности два бесконечно малых замкнутых контура контур def, обращаемый в точку, не сходя с поверхности нити, и контур ab , охватывающий нить. По прошествии времени t жидкость, заполняющая трубку М, будет заполнять некоторую бесконечно тонкую трубку М точки же жидкости, лежащие на контурах def и ab , будут лежать на контурах d e f и а Ь г.. По теореме Томсона циркуляции скоростн по этим но-ным контурам будут те же, какие были по старым. Так как контур def лежит на поверхности вихря, то (def) = О, а следовательно, и d e f) = О, и так как это рассуждение применимо ко всякому бесконечно малому контуру рассматриваемого вида, то заключаем, что поверхность трубки М есть поверхность нихря, т. е. бесконечно тонкая масса жидкости, заполняющая эту трубку, есть вихревая нить. Далее аЬс) есть двойное напряжение вихревой нити М, а а Ь г ) есть двойное напряжение вихревой нити М так как аЬс) = а Ь с ), то напряжения обоих вихрей одинаковы.  [c.395]

Так как ноток вихря через боковую поверхность вихревой трубки равен нулю, то последнее соотнощение означает, что лоток вихря через любое поперечное сечение вихревой трубки остается нelrзJмeнныJVl в данный момент времени. Последнее утверждение составляет содержание II теоремы Гельмгольца. Из этой теоремы следует, что поток завихренности можно считать характеристикой вихревой трубки, которая называется силой или интенсивностью вихревой трубки. С другой стороны, если к вихревой трубке применить соотношение (1.7), то можно заключить, что иитеисив)юсть вихревой трубки равна циркуляции скорости по замкнутому контуру, лежащему на гю-верхности трубки и один раз ее охватывающему теоре.ма Стокса).  [c.27]

Если в жидкости проследить непрерывное распределение направления мгнаденных осей вращения частиц и провести линию, касательные к к-рой будут совпадать о этими осями, то такая линия будет называться вихревой линией. Поверхность, проведенная через какую-нибудь линию в жидкости и образованная из вихревых линий, называется вихревой поверхностью. Жидкость, заключенная внутри вихревой поверхности, построенной на бесконечно малом замкнутом контуре, называется вихревой нитью. Если среди неза-вихренной жидкости имеется вихревая область, к-рая заключена в конечной толщины трубку, образованную вихревой поверхностью, то она называется вихревым шнуром. Еоли же эта область заключена между двумя близкими вихревыми поверхностями, она называется вихревым слоем. Произведение площади сечепия вихревой нити а на угловую скорость вращения жидкости со в этой нити называется напряжением вихревой нити. Напряжение вдоль вихревой нити остается постоянным (вторая теорема Гельмгольца), а отсюда следует, что вихревые нити сами на себя замыкаются или лешат на границах жидкости, ибо если вихревая нить кончилась бы в жидкости острием, то а = О, и со обратилась бы в оо. Возьмем в жидкости какой-либо замкнутый контур, спроектируем на касательную в каждой его точке скорость  [c.436]

Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]


Этим следствием из теоремы Стокса можно воспользоваться для того, чтобы заново доказать первую теорему Гельмгольца о вихрях (иным способом, не-Фиг. 114 Фиг. 115. Замк- жели это было сделано в предыдущем Замкнутый нутыи контур параграфе). Возьмем на поверхности  [c.248]


Смотреть страницы где упоминается термин Теорема Гельмгольца по замкнутому контуру : [c.56]    [c.216]   
Гидрогазодинамика Учебное пособие для вузов (1984) -- [ c.93 ]



ПОИСК



Гельмгольц

Замкнутый контур

Теорема Гельмгольца

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте