Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий Коэффициент теплопроводности

Основные Средние характеристики алюминия Коэффициент теплопроводности,  [c.133]

В работе [101], помимо определения коэффициента теплопроводности, проведены измерения и степени черноты покрытия из окиси алюминия, нанесенного плазменным способом (схема установки приведена на рис. 6-2, там же см. ее описание). Для расчета интегральной степени черноты получена формула  [c.168]

При / = 0° С коэффициент теплопроводности некоторых металлов равен меди — 390, алюминия — 209, железа—74 вт1 М град).  [c.270]


Температура покрываемой поверхности металла зависит от массы детали, на которую наносится покрытие, значений теплоемкости и коэффициента теплопроводности как металла, так и покрова, и от условий напыления. На рис. 3 для покрытий из окиси алюминия и двуокиси циркония приведены найденные экспериментальным путем значения температур покрываемой  [c.236]

Проведенные исследования теплопроводности показали, что все добавки, кроме алюминия, изменяют коэффициент теплопроводности весьма незначительно. Поэтому дальнейшие исследования проведены для композиционных покрытий, в качестве наполнителя в которых применялся тонкодисперсный алюминиевый порошок.  [c.129]

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ РАСПЛАВЛЕННОГО АЛЮМИНИЯ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 725—1570°С (новый радиационный метод)  [c.83]

Для исследования температурной зависимости коэффициента теплопроводности ра-сплавленного алюминия в диапазоне температур 800— 1600° С был разработан радиационный метод. По этому методу стационарное температурное поле по высоте столбика расплавленного  [c.83]

Через каждое сечение г образца, лежащее книзу от перегиба (2 = 0) его температурной кривой, переходит количество теплоты, собранное на участке О — 2. Если это количество теплоты известно, то для сечения 2 по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.  [c.85]

В соответствии со сказанным величина коэффициента теплопроводности алюминия будет рассчитываться на основании балансового уравнения для участка О — 2 книзу от перегиба температурной кривой  [c.86]

В этом уравнении = 15,5-10 (м)—наружный диаметр графитового баллона rfo= 11,45-lO" ( vi)—диаметр сечения испытуемого расплавленного металла q z) (ккал/м час) —-тепловой поток на наружной -поверхности графитового баллона Я,а1 и гр ккал м-час-град)—соответственно коэффициенты теплопроводности алюминия и графита.  [c.86]

Температурная зависимость коэффициента теплопроводности ip а СП лав л енного алюминия  [c.91]

На фиг. 6 нанесена одна точка, отвечающая среднему значению из пяти опытов, проведенных этим методом в интервале темлератур 700—750° С. Взятые по сглаживающей кривой фиг. 6 значения коэффициента теплопроводности расплавленного алюминия приведены ниже.  [c.91]

Коэффициент теплопроводности алюминия в поперечном магнитном поле  [c.25]

Рис. 8. Влияние температуры на коэффициент теплопроводности сплавов титана с алюминием Рис. 8. <a href="/info/222925">Влияние температуры</a> на <a href="/info/76851">коэффициент теплопроводности сплавов</a> титана с алюминием

При легировании так же, как и при увеличении содержания примесей, теплопроводность титана, как правило, уменьшается. На рис. 8 показано влияние алюминия на теплопроводность титана при различных температурах по данным [42]. В области средних температур (100—500° С) уже первые порции алюминия (1,5—2,5% по массе) вызывают значительное уменьшение коэффициента теплопроводности (примерно на 30% при 150° С). Дальнейшее увеличение содержания алюминия сопровождается еще большим снижением коэффициента теплопроводности. Однако у сплава с содержанием алюминия около 5% теплопроводность оказывается выше, чем у менее легированных сплавов.  [c.21]

Коэффициенты теплопроводности промышленных сплавов титана в основном определяются содержанием алюминия. При его содержании около 4% значения коэффициента теплопроводности для большинства сплавов находятся в пределах 0,02— 0,023 кал/(см-с-°С).  [c.22]

На установке измерены коэффициенты теплопроводности аргона, азота и воздуха. При измерении теплопроводности аргона и азота использовались плиты из алюминия, при измерении теплопроводности воздуха — плиты из меди.  [c.199]

Титан и сплавы на его основе — сравнительно новый конструкционный материал, имеющий большое будущее благодаря высокой удельной прочности в интервале 450—500 °С и хорошую коррозионную стойкость во многих средах. По прочности и коррозионной стойкости этот материал в ряде случаев превосходит нержавеющую сталь. Титан — серебристо-белый легкий металл с плотностью 4,5 г/см (плотность на 40 % меньше стали и только на 70 % больше алюминия) и температурой плавления 1650—1670°С. Свойства титана и его высокая температура плавления требуют при сварке концентрированного источника теплоты. Однако более низкий коэффициент теплопроводности и более высокое электрическое сопротивление создают условия для потребления меньшего количества электроэнергии по сравнению со сваркой стали и, особенно, алюминия. Титан практически не магнитен, поэтому при сварке заметно уменьшается магнитное дутье. Главным отрицательным свойством титана является его способность активно взаимодействовать с газами при повышенных температурах. При комнатной температуре титан весьма устойчив против окисления, но при высокой температуре он легко растворяет кислород, что приводит к резкому повышению прочности и снижению пластичности. Содержание кислорода в титановых сплавах, используемых для сварных конструкций, должно быть не более 0,15%. По эффективности воздействия на тнтан азот является более энергичным элементом, чем кислород и резко повышает его прочностные свойства, понижая пластические. Максимально допустимое содержание  [c.15]

В состав применяемых в настоящее время нержавеющих сталей и сплавов наряду с хромом, алюминием и никелем входят в различном сочетании марганец, кремний, вольфрам, кобальт и другие элементы. Такие стали и сплавы в различной степени чувствительны к термическому воздействию при нагреве, что в значительной мере затрудняет установление технологического режима резки. Это обусловливается следующими свойствами сталей. Теплопроводность, как правило, уменьшается с увеличением степени легирования стали и числа легирующих элементов. С повышением содержания углерода теплопроводность понижается. Аналогичное влияние оказывает кремний и марганец. Особенно сильно снижают теплопроводность хром и никель. Кроме того, в некоторые марки сталей входят два и более легирующих элемента, суммарное действие их сильнее, чем одного из них в таком же количестве. Так, например, теплопроводность аустенитных сталей при 540° колеблется в пределах 0,01984—0,02025 кал/см- сек- град. Значения коэффициента теплопроводности для мартенситных и ферритных нержавеющих сталей колеблется в пределах 0,02187— 0,02284 кал[см сек град, причем эти значения уменьшаются с увеличением содержания хрома от 12 до 26%. С другой стороны, теплопроводность обычной углеродистой стали составляет более 0,0405 кал/см сек град, а теплопроводность низколегированных сталей, содержащих до 5% Сг, немного ниже.  [c.23]


Определить удельный тепловой поток с учетом и без учета теплового сопротивления контакта через многослойную плоскую стенку, состоящую из слоя окиси циркония толщиной 61 = 0,2 мм, слоя стали толщиной 62 = 6 мм и слоя алюминия толщиной бз=10 мм (рис, 14.2), если температуры на внешних поверхностях стенки поддерживаются постоянными и равными / ,= 1200° С и/ -,=400°С коэффициент теплопроводности окиси циркония 1 = 1,15 вт (м-град), стали >.2 = 34,9 вт (м-град) и алю-  [c.128]

При обработке опытных данных физические параметры алюминия — коэффициент теплопроводности, температуропроводностн, кинематической вязкости, удельный вес, а также коэффициент теплопроводности графита, из которого изготовлен экспериментальный участок,— определялись по опытным данным, полученным в Энергетическом институте Никольским [5], Калакуцкой (6], Гольцовой [7]. Наши опытные данные представлены в табл. 5, а результаты их обработки — на фиг. 4 в виде зависимости локальных значений критерия Нуссельта Nu от критерия Пекле Ре, подсчитанных на участке стабилизированного теплообмена Полученные результаты могут быть также использованы для расчета средних характеристик теплообмена, если относительная длина труб xld> 20.  [c.80]

Лучшими прооодпиками теплоты являются металлы, у которых X изменяется от 3 до 418 впг1м-град. Коэффициенты теплопроводности чистых металлов, за исключением алюминия, с возрастанием температуры убывают. Теплоту в металлах переносят главным образом свободные электроны. Самым теплопроводным металлом является чистое серебро (X = 418 вт м-град).  [c.350]

В данной работе были рассчитаны температурные поля неоднородных пластин, имитирующих реальные биметаллические пластины. Коэффициенты теплопроводности (А.) и температуропроводности (а) зависели от температуры и считалось, что они не испытывают разрыва в месте соединения пластин. Одна сторона биметаллической пластины испытывала циклический поверхностный нагрев, а противоположная охлаждалась по закону Ньютона. Были рассмотрены комбинации следующих материалов алюМиний-сталь, бериллий-медь, бериллив-сталь, ванадий-сталь, медь-сталь, ниобий-сталь,, молибден-сталь, мо либден-мель, которые приводят к нескольким характерным зависимостям а, X от координаты и температуры, что нашло отражение и а найденных зависимостях температуры от координаты и времени.  [c.195]

Как следует из критериев изоморфизма, ионы редкоземельных элементов вследствие их больших размеров не могут быть введены в решетку оксида алюминия. Попытки преодолеть эти затруднения привели к исследованию соединений типа LaMgAlllOlв, характерных, как это следует из диаграмм состояний (см. рис. 39—41), для первой группы редкоземельных элементов (Ба, С1 и Рг). Такие соединения имеют гексагональные решетки, допускают легирование ионами неодима и характеризуются высоким коэффициентом теплопроводности. Технология выращивания кристаллов в настоящее время разрабатывается и в будущем они могут стать конкурентоспособными по сравнению с таким материалом, как гранат.  [c.75]

Рис. n-IV-25. Зависимость коэффициента теплопроводности стеклометаллических пластиков на основе эпоксидной смолы ЭД-5 от объемного содержания V медного волокна (/) и порошков меди, алюминия или железа (2) [Л. П-18]. Рис. n-IV-25. Зависимость <a href="/info/790">коэффициента теплопроводности</a> стеклометаллических пластиков на основе <a href="/info/33628">эпоксидной смолы</a> ЭД-5 от объемного содержания V медного волокна (/) и порошков меди, алюминия или железа (2) [Л. П-18].
Средняя вероятная ошибка экспериментального определения коэффициента теплопроводности расплавленного алюминия в инт вале температур 725—1570° С составляет в наших опытах около -+-10%. что рполне достаточно для инженерных расчетов.  [c.91]

На горячих участках твердого и жидкого металлического тела электроны обладают большей средней энергией, чем на холодных. Легко переходя в области с низкой температурой, электроны вносят добавочную энергию и повышают температуру. Большой подвижностью общих электронов объясняют высокую электро- и теплопроводность металлов. Следовательно, с увеличением валентности теплопроводность металлов должна расти и для металлов с однотипной кристаллической решеткой должна быть периодической функцией порядкового номера со-01ветствующих химических элементов. На опыте это и наблюдается. Например, для натрия, магния и алюминия с числом валентных электронов 1, 2 и 3 коэффициент теплопроводности при 325" К составляет соответственно 100,8 135,4 и 178 ккал м-ч-град). В отличие от металлов в телах с ионной к ковалентной связью главную роль играет теплопроводность основной решетки, вызванная колебаниями ее узлов. Такие тела относительно мало теплопроводны.  [c.6]

Если не упоминать более об опытах Впкке с алюминием, то в экспериментальных данных различных исследователей не обнаружено заметной зависимости переноса теила исевдоожиженным слоем от коэффициента теплопроводности частиц материала. Этого следовало ожидать и на основании предложенных теоретических формул, при выводе которых было сделано, однако, затрагивающее теплопроводность материала допущение о практическом отсутствии градиента температуры внутри частиц благодаря достаточной теплопроводности материала.  [c.394]

Коэффициент теплопроводности для большинства неметаллических твердых тел линейно изменяется с температурой. Ряд керамических веществ (окись бериллия, алюминия, двуокись титана и др.) имеет сложную температурную зависимость для коэффициента теплопроводности. Его велчина вначале падает, а затем возрастает за счет увеличения лучистого переноса тепла внутри этих тел. Указанные керамические. вещества являются твердыми диэлектриками и одновременно пористыми телами. Кроме них, многие твердые тела имеют не сплошное, а пористое или волокнистое строение Различные пористые материалы характеризуются наличием пустых промежутков (пор) между отдельными твердыми частицами. Часть этих пор представляет собой небольшие замкнутые объемы, а некоторые из них сообщаются между собой, образуя открытую пористость. Наполнителем пор может являться различная среда. Распространение тепла обусловливается совокупностью различных явлений. Внутри твердых частиц тела, а также в местах непосредственного контакта между ними тепло переносится за счет теплопроводности. В среде, заполняющей поры, перенос тепла осуществляется также теплопроводностью и, кроме того, за счет конвекции и теплового излучения. С увеличением размеров пор роль конвекции увеличивается. При уменьшении размеров пор и увеличении их количества имеет место одновременное уменьшение размеров твердых частиц, составляющих пористое тело. Это приводит к уменьшению поверхности соприкосновения между частицами, соответствующему увеличению контактного теплового сопротивления, а следовательно, уменьшению коэффициента теплопроводности.  [c.9]


Из изложенных данных вытекает ряд соображений, полезных при выборе и применении титановых сплавов в машиностроительных конструкциях. В частности, максимальной теплопроводностью обладают титан и сплавы системы Ti—Zr—А1—Р-стабплизатор при минимальном содержании алюминия и содержании Р-стаби-лизаторов в пределах их растворимости в а-фазе титана. При этом содержание кислорода и азота по аналогии с алюминием должно быть минимально. Целесообразно учитывать, что коэффициент теплопроводности сплавов титана увеллчивается с повышением температуры. В тех случаях, когда требуется высокое тепловое сопротивление, предпочтительными являются сплавы с повышенным содержанием алюминия, олова и р-стабилиза-торов.  [c.22]

Кремниевая кислота является основным компонентом сложных силикатных накипей (до 50% кремниевой кислоты, да 30% оксидов железа, меди и алюминия и до 10% оксида натрия), которые способны огла1а(ься на стенках котлов и теплообменных аппаратов. Кремниевая кислота образует накипи с катионами кальция, магния, натрия, железа, аммония. Силикатная накипь обладает низким коэффициентом теплопроводности и поэюму существенно снижает теплотехнические показатели работы котлов и теплообменных аппаратов.  [c.592]

D — коэффициент диффузии X — коэффициент теплопроводности q — эффективная тепловая мощность дуги — скорость сварки а — г низкоуглеродистая сталь с D = 0,08 mV и = 0,38 Вт/(см К) д — з — различные материалы при q = 4,2 кВт и Ксв = 0,2 см/с д — низкоуглеродистая сталь е — хромоникелевая сталь ж — алюминий з — медь  [c.23]

Чистый алюминий применяют в электротехнике для ивготов-ления проводников тока. Теплопроводность и электропроводность алюминия несколько ниже, чем у чистой меди. Удельное сопротивление составляет 0,0269 ом мм 1м, коэффициент теплопроводности 218 вт1м-град (0,52 кал см - сек - град). Все примеси ухудшают тепло- и электропроводность алюминия.  [c.278]

Коэффициент теплопроводности показывает, какое количество тепла передается за единицу времени терез единичную площадь стеики единичной толшяны при разности температур между поверхностями стеикн в один градус. Коэффициент теплопроводности металлов изменяется в широких пределах. Наиболее теплопроводными металлами являются (в порядке ее убывания) серебро, медь, золото, алюминий (422,8 385,85 311,53 226,69 Вт/м-К). при 20 С. Теплопроводность других металлов- приведена в табл. 73.  [c.199]

Коэффициент теплопроводности алюминия при =200 С Термодинамические свойства диме-тилпропана (С5Н12) удельные 0,530 кал (см-сек-град) 222 вт/(м-град)  [c.38]

B. качестве материала для электрической изоляции ТЭГ при температурах до 400—500° С может служить слюда толщиною 0,02— 0,04 мм. Слюда в зависимости от сорта имеет удельный вес 2,5— 3,2 г см , электрическую прочность 60—200 кв мм, объемное электрическое сопротивление 10 —ом см (при 20° С), теплостойкость 500—900° С, коэффициент теплопроводности 0,0026— 0,0030 вт (см-град). Можно надеяться на использование в будущем синтетической слюды, созданной в последние годы во Всесоюзном научно-исследовательском институте синтеза минерального сырья, с лучшими характеристиками, чем у природной слюды.Обыч-ные лаки и эпоксидные смолы пригодны в качесте изоляции для ТЭЭЛ, работающих при низких температурах, 100—200° С. Пластинки и пленки из окиси бериллия, алюминия, циркония и некоторых других окислов можно использовать для высокотемпературных ТЭЭЛ. Характеристики этих материалов приведены в работах 135—37].  [c.102]

Керамика из окиси магния имеет наибольший коэффициент термического расширения, составляющий величину около 14 10 для температурного интервала 20—1000° С. Сочетание такого большого коэффициента термического расширения со сравнительно небольшим коэффициентом теплопроводности (29—5 ккал/м час °С в интервале температур 100—1000° С) обусловливает низкую термическую устойчивость керамики пз чистой окиси магния. Введение в периклазовую керамику добавки окиси алюминия, вызывающей энергичную кристаллизацию шпинели, значительно увеличивает ее термическую стойкость. Здесь, так же как и для других видов керамики чистых окислов, одновременная кристаллизация другой фазы с иным коэффициентом тердшческого расширения (для шпинели 8,6 10 ) способствует повышению термической стойкости изделия, вероятно, вследствие возникновенпя микротрещин на границе двух различных фаз.  [c.278]

По прочности и коррозионной стойкости титан и его сплавы в ряде случаев превосходят нержавеющую сталь Х18Н19. Титан химически стоек, имеет в 4 раза меньший коэффициент теплопроводности и в 5 раз более высокое электрическое сопротивление по сравнению со сталью, поэтому для его сварки тратится меньше электрической энергии, чем для стали и алюминия. Однако высокая температура плавления требует при сварке применять более концентрированные источники  [c.13]


Смотреть страницы где упоминается термин Алюминий Коэффициент теплопроводности : [c.11]    [c.11]    [c.158]    [c.72]    [c.91]    [c.79]    [c.378]    [c.93]    [c.45]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.189 ]



ПОИСК



Алюминий и алюминиевые сплавы v Теплоемкость, коэффициенты теплопроводности я линейного расширения алюминия некоторых марок

Коэффициент теплопроводности

Коэффициент теплопроводности алюминия и поперечном магнитном поле

Мел — Коэффициент теплопроводност

Никольский. Экспериментальное определение коэффициента теплопроводности расплавленного алюминия в интервале температур

Температурные коэффициенты линейного расширения сплавов систеКоэффициенты теплопроводности и линейного расширения спеченных порошковых материалов на основе алюминия

Теплопроводность алюминия



© 2025 Mash-xxl.info Реклама на сайте