Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства поверхностных акустических волн

Свойства поверхностных акустических волн  [c.263]

Например, сжатие ЛЧМ-сигнала во времени может быть осуществлено с помощью устройства, изображенного на рис. 13.19. Принцип действия его основан на том, что углы рассеяния света, прошедшего через различные участки звукового поля, обратно пропорциональны длине волны звука. Поэтому весь дифрагированный свет практически одновременно попадает на вход фотоприемника, что и влечет за собой сжатие ЛЧМ-сигнала. Коэффициенты сжатия для устройств подобного типа составляют - 100 [6, 56]. Для сравнения вспомним, что в акустоэлектронных фильтрах с апериодическими отражательными решетками (см. 4 гл. 12) этот параметр достигает нескольких десятков тысяч. Используя нелинейность характеристики фотоприемника, можно получить функцию свертки двух противоположно направленных акустических сигналов [571. Для этого на кристалл нужно направить пучок света и выделить с фотоприемника дифрагированный световой сигнал на двойной частоте. Согласно [57] вносимые потери устройства, использующего дифракцию на поверхностных акустических волнах, составляли 44 дБм, что вполне сопоставимо с эффективностью акустоэлектронных устройств свертки на основе токовой нелинейности (см. 7 гл. 12). Для повышения конкурентоспособности акустооптических процессоров необходимы дальнейшие поиски материалов с высокими фотоупругими свойствами. Определенные возможности здесь открывает использование взаимодействия света с волнами пространственного заряда, сопровождающего распро-  [c.365]


Поверхностная акустическая волна распространяется в тонком слое под поверхностью подложки и при использовании более высокого возбуждающего электрического напряжения амплитуда механического смещения может принимать высокие значения, что является причиной появления нелинейных эффектов, которые приводят к зависимости свойств фильтра от амплитуды входного напряжения.  [c.415]

Данный метод позволил определить подповерхностный максимум температуры, т.е. фиксирование максимальной температуры не на поверхности трения, а на некотором расстоянии от нее. В частности, показано, что подповерхностный максимум возможен как при смене типа граничных условий, так и при нестационарном нагружении металлополимерных сопряжений. При этом величина и расположение этого максимума определяются как внешними факторами (величиной импульса, формой и частотой его приложения, скоростью скольжения и размерами образца, условиями теплообмена), так и внутренними (механическими и теплофизическими свойствами материала). Правомерность этого подтверждена результатами экспериментов при помощи нового метода диагностики температурного поля, основанного на применении поверхностных акустических волн Рэлея. Физический смысл метода заключается в том, что энергия поверхностной волны Рэлея локализована в слое толщиной Х,...1,5Х и, следовательно, глубина проникновения волны зависит от ее частоты.  [c.53]

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.  [c.102]

Метод прохождения применяют для исследования физико-механических свойств материалов с большим поглощением и рассеянием акустических волн, например при контроле прочности бетона по скорости ультразвука. При двустороннем соосном расположении преобразователей обычно используют продольные волны. При контроле способом поверхностного прозвучивания преобразователи располагают по одну сторону от ОК и используют головные, поперечные или поверхностные волны. В обоих случаях измеряют время распространения и амплитуду сквозного сигнала.  [c.215]


До сих гюр в этой книге мы мало интересовались вопросами возбуждения и приема звука ), рассматривая акустические волны как нечто заданное. Однако в акустоэлектронике поверхностных волн вопросы возбуждения и приема играют основополагающую роль, так как от этого зависят эффективность и избирательные свойства соответствующих устройств. Поэтому мы кратко обсудим основные методы возбуждения и приема ПАВ, глав- ш. п пдг,  [c.307]

В зависимости от направления колебаний частиц по отношению к направлению распространения волны волны акустические бывают различных типов. В жидкостях и газах возникают только продольные волны (табл. 1.4), в которых направления колебаний частиц и волны совпадают. В твердых телах наряду с продольными возникают поперечные волны, в которых движение частиц перпендикулярно распространению волны. Кроме того, вдоль свободной поверхности твердого тела могут распространяться поверхностные волны (Рэлея), частицы в которых движутся по эллипсу в плоскости, перпендикулярной поверхности. В металле эти волны практически затухают на глубине 1,5 X. Скорости распространения перечисленных волн, зависящие от свойств среды, связаны между собой соотношениями  [c.20]

Волны растяжения возникают в объектах типа стержня. Тогда частицы колеблются вдоль направления распространения волн и перпендикулярно к нему. Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, го отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики. Свойства упругих волн учитываются при разработке технологии и средств контроля изделий.  [c.58]

Под некогерентной частью записи понимается остаток от вычитания когерентной части из полного поля регулярных волн. Во-первых, это уровень шумовых компонент, которые создаются как флуктуациями амплитуд, фаз, частот на неоднородностях, размеры которых составляют доли зоны Френеля, так и рассеянием отраженных волн. Сюда же может быть отнесен остаточный уровень кратных волн и волн-помех других типов, в том числе поверхностных, а также фон микросейсм на поверхности наблюдений. Во-вторых, под некогерентной компонентой понимаются резкие (по отношению к размерам базы) изменения свойств среды. Например, это могут быть локальные изменения отражений из-за нарушений гладкости границ (сбросов, надвигов и т. д.), а также от неоднородностей различной природы, в том числе при наличии резких контактов газ — вода, либо при изменении акустических свойств осадков, вызванных влиянием химических процессов в окрестности залежи. Сюда же можно отнести влияние дифрагированных волн на контактах залежи с вмещающей породой, или на краях ловушек стратиграфического и литологического типов, в том числе неровных краях рифов.  [c.81]

В ограниченных твёрдых телах кроме цродольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностное акустические волны, скорость к-рых меньше скорости об нных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны, скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з, для продольной волны в стержне с , , иоперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде С[ (табл. 3)  [c.548]


До сих пор мы ограничивались рассмотрением взаимодействия светв с объемной звуковой волной в материальных средах, В фото-упругой среде объемная звуковая волна приводит к образованию объемной фазовой решетки. Вследствие периодической модуляции показателя преломления свет испытывает в такой среде дифракцию. Поверхностные акустические волны (волны Рэлея) распространяются в свободном пространстве вблизи полубесконечной среды, причем их акустическая энергия концентрируется в приповерхностном слое толщиной порядка длины звуковой волны. Под действием поверхностной акустической волны оптические свойства вещества также изменяются. В 1967 г. появилось первое сообщение Иппена [6] об экспериментальном наблюдении дифракции света на рэлеевских волнах в кварце. Такая дифракция света может возникать вследствие двух различных причин  [c.384]

Пьезопреобразователи электрических сигналов (резонаторы, фильтры, линии задержки, устройства свертки сигналов и др.) делятся на две основные группы, использующие соответственно объемные и поверхностные акустические волны (ПАВ). В первой группе преобразователей используются резонансные свойства и особенности распространения упругих волн в объеме пьезоэлектрика. Вторая группа преобразователей сигналов основана на амплитудно-фазовых изменениях спектров сигналов, происходящих при возбуждении, распространении и детектировании акустичес-  [c.131]

Поверхностные акустические волны в пьезоэлектриках. Акусто-электропика начиная с 60-х годов стала одним из наиболее бурно развивающихся направлений в технике преобразования и аналоговой математической обработки радиосигналов в широком диапазоне частот и реальном масштабе времени. Основные возможности акустоэлектроники обусловлены малой скоростью звука по сравнению со скоростью света и малым затуханием ультразвука в высокодобротных монокристаллических колебательных системах. Наибольшее развитие за последнее время получили акусто-электронные устройства, использующие ПАВ и находящие все более широкое применение в радиоэлектронике, автоматике, телевидении и связи. Вопросы техники и теории ПАВ подробно рассмотрены в [46, 49, 50, 52, 62—69]. В рамках настоящего изложения ограничимся, как и в предыдущих случаях, краткой характеристикой основных областей применения устройств па ПАВ, сводкой важнейших свойств преимущественно используемых материалов и оценкой вероятных тенденций дальнейшего развития. Наиболее приближенная к задачам практики классификация устройств па ПАВ дана в [49]. В согласин с нею основными элементами акустоэлектронных радиокомпонентов (АРК) являются преобразователи ПАВ и элементы акустического тракта.  [c.149]

Рэлеевские волны, будучи наиболее распространенным типом поверхностных акустических волн, играют важную роль в сейсмических явлениях [10], так как они расходятся при распространении от источника возмущения только в двух измерениях и поэтому затухают — обратно пропорционально корню из проходимого волной расстояния. Волны мегагерцевого диапазона широко используются в поверхностной дефектоскопии [И, 12, 24] и в аку стоэлектронных устройствах обработки сигналов [25—29]. Гиперзвуковые рэлеевские волны используются при изучении физических свойств поверхности твердого тела [30].  [c.203]

Акустоэлектроника — относительно новая область физической акустики и электроники. Она объединя как фундаментальные вопросы акустики твердого тела, так лх многочисленные приложения, главным образом к системам. работки сигналов и физике твердого тела. Как самостоятельное направление акустоэлектроника оформилась к концу 60-х годов, хотя отдельные работы, посвященные различным аспектам применения акустических волн (главным образом объемных) в электронике, в частности в линиях задержки и электромеханических фильтрах, появлялись и раньше [1—3]. В этих традиционных приложениях использовались, однако, лишь два свойства акустических волн - малая скорость, составляющая лишь / 10 от скорости электромагнитных волн, и относительно низкое затухание на длину волны. Лишь с появлением эффективных методов возбуждения высокочастотных (от 10 М1Гк до 3 ГГц) поверхностных акустических волн (ПАВ), в особенности с изобретением встречно-штыревого преобразователя, позволяющего эффективно возбуждать и принимать ПАВ в пьезоэлектрических кристаллах, стало возможным говорить об акустоэлектронике в том широком смысле, в котором она понимается сейчас. Последнее обусловлено следующими особенностями устройств на ПАВ. Во-первых, это те же малая скорость и затухание поверхностных волн во-вторых, интегральность исполнения большинства устройств на ПАВ, позволяющая использовать для их изготовления готовую технологию, разработанную ранее для интегральных микросхем в третьих, доступность тракта ПАВ, энергия которых сосредоточена вблизи поверхности, и связанная с этим возможность эффективного управления характеристиками этих волн с помощью всевозможных электрических и механических внешних воздействий. Наконец, многие а кустоэлектронные устройства обладают поистине уникальными свойствами. Если еще учесть их хорошую воспроизводимость, высокую надежность, то всеобщий интерес к акустоэлектронике станет вполне понятным. Литература по акустоэлектронике весьма обширна. Ей посвящено свыше пяти тысяч оригинальных статей, множество обзоров (см., например, [4—81), несколько монографий [9—14] и специальных выпусков журналов [151, [16]. Мы, разумеется, не будем пытаться осветить все  [c.305]

Часть II книги посвящена электронным устройствам на основе поверхностных акустических волн (ПАВ). Это относительно новая область применения пьезоэлектрических элементов, развитие которой стало возможно после решения технологических проблем прецизионной литографии. Для понимания дальнейших разделов книги здесь приведены основные свойства ПАВ, причем использована концепция изложения, принятая в современной литературе по ПАВ. Уделено внимание возбуждению и детектированию ПАВ с помощью встречно-штыревого преобразователя, и представлены различные варианты его эквивалентной электрической схемы. В этой части центральными являются разделы, посвященные линейным аналоговым элементам и устройствам на ПАВ, т. е. прежде всего частотным фильтрам и резонаторам. Основное внимание уделено методам синтеза встречноштыревого преобразователя в соответствии с требуемой частотной или импульсной характеристикой, а также анализу свойств фильтров и резонансных систем. Кратко описаны устройства на ПАВ, предназначенные для обработки дискретных сигналов, а также устройства, использующие нелинейные явления. (Эта очень перспективная область применения ПАВ требует более подробного и полного изложения, однако такая задача выходит за рамки данной монографии.)  [c.4]


Для возбуждения и регистрации ПАВ применяют пьезоэлектрики, зна-че Н1е которых в связи с этим существенно возросло. Поверхностные акустические волны обладают рялом замечательных свойств, представляющих интерес лля специалистов в области электроники. Прежде всего это (в сравнении е объемными волнами) их доступность и возможность управлять ими во всех точках поверхности, где они сушествуют. Поверхностные аку-сгпческие волны распространяются со скоростью на пять порядков ниже, чем скорость электромагнитных волн, что позволяет использовать мето-МЬ1. применяе.мые в диапазоне СВЧ.  [c.263]

В последние годы проводятся работы по использованию поверхностных акустических волн (типа волн Релея) в пьезоактивных средах для измерения взаимного положения двух звеньев с высокой точностью. Система измерения с поверхностными акустическими волнами может быть основана на свойствах контакта двух пьезоэлектрических поверхностей, по одной из которых распространяется поверхностная акустическая волна. Ее электрическое поле индуцирует в другой среде поверхностную волну, которая поступает на приемный преобразователь. При фазовой скорости волны порядка (1- 5)-10 м/с на частоте 1 МГц погрешность измерения положения не превышает 10—50 мкм соответственно, а на частоте 100 МГц — погрешность не более 0,1—0,5 мкм предельная точность метода характеризуется погрешностью около 0,01 мкм.  [c.44]

КВАНТОВЫЙ ГИРОСКОП — собирательный термин длн приборов квантовой электроники, служащих для обнаружения и определепия величины и знака, угловой скорости вращения или угла поворота относительно инерциальной системы отсчёта. В основу действия К. г. положены гиросконич. свойства, частиц или волп — ато.миых ядер, электронов, фотонов, фоноиов и т. д. Эти свойства могут быть обусловлены как спиновыми и орбитальными моментами микрочастиц, так и зависимостью времени отхода замкнутого контура (интерферометра или резонатора), встречными световыми или поверхностными акустическими, магнитными волнами от скорости и направления враще1П1я контура. Полезный сигна.ч, пропорциональный скорости вращения, возникает или за счёт прецессии механич. и магнитных моментов микрочастиц, или за счет возникновения разности фаз или частот ме кду встречными волнами во вращающемся контуре.  [c.330]

Скорость распространения продольных волн зависит от плотности материала и его акустических свойств. Эта скорость для продольных и поверхностных волн почти одинакова для попереч-. ных волн в твердых материалах скорость примерно вдвое меньше, чем для продольных. Представление о скорости распространения можно составить по следующим данным. Продольные волны распространяются со скоростью в кварце и кварцевом стекле — 5600 м1сек в каучуке — 1500 м1сек в органическом стекле — 2700 м/сек в слюде — 7800 м/сек в фарфоре — 5300 м/сек в трансформаторном масле—ЛАОО м/сек в воздухе — 335 м/сек.  [c.299]


Смотреть страницы где упоминается термин Свойства поверхностных акустических волн : [c.7]    [c.299]    [c.500]    [c.52]    [c.108]    [c.277]    [c.198]   
Смотреть главы в:

Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах  -> Свойства поверхностных акустических волн



ПОИСК



Акустические свойства

Волна акустическая

Волны поверхностные

Волнь акустические

Поверхностные волны акустические

Свойства поверхностных сил



© 2025 Mash-xxl.info Реклама на сайте