Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фильтры акустоэлектронные на ПАВ

Акустоэлектроника использует принцип преобразования электрических волн в акустические и обратно в пьезоэлектриках. Примером функционального акустоэлектронного прибора может служить выше рассмотренный интегральный кварцевый фильтр, выполняющий функции резонатора. Другим применением акустоэлектроники в радиотехнике могут служить разработанные в настоящее время акустические линии задержки, выполненные на стеклянных, кварцевых металлических и других брусках и пластинах. Акустические волны в среде распространяются на пять порядков медленнее, чем электромаг-  [c.227]


Например, сжатие ЛЧМ-сигнала во времени может быть осуществлено с помощью устройства, изображенного на рис. 13.19. Принцип действия его основан на том, что углы рассеяния света, прошедшего через различные участки звукового поля, обратно пропорциональны длине волны звука. Поэтому весь дифрагированный свет практически одновременно попадает на вход фотоприемника, что и влечет за собой сжатие ЛЧМ-сигнала. Коэффициенты сжатия для устройств подобного типа составляют - 100 [6, 56]. Для сравнения вспомним, что в акустоэлектронных фильтрах с апериодическими отражательными решетками (см. 4 гл. 12) этот параметр достигает нескольких десятков тысяч. Используя нелинейность характеристики фотоприемника, можно получить функцию свертки двух противоположно направленных акустических сигналов [571. Для этого на кристалл нужно направить пучок света и выделить с фотоприемника дифрагированный световой сигнал на двойной частоте. Согласно [57] вносимые потери устройства, использующего дифракцию на поверхностных акустических волнах, составляли 44 дБм, что вполне сопоставимо с эффективностью акустоэлектронных устройств свертки на основе токовой нелинейности (см. 7 гл. 12). Для повышения конкурентоспособности акустооптических процессоров необходимы дальнейшие поиски материалов с высокими фотоупругими свойствами. Определенные возможности здесь открывает использование взаимодействия света с волнами пространственного заряда, сопровождающего распро-  [c.365]

По физич., принципам, лежащим в основе работы акустоэлектронных устройств, их мояшо разделить на пассивные линейные устройства, в к-рых производится линейное преобразование сигнала (линии задержки, фильтры п др.), активные линейные устройства (усилители сигналов) и нелинейные устройства, где происходит генерация, модуляция, перемножение и др. преобразования сигналов. Наиболее распространены и давно применяются пассивные устройства.  [c.43]

П. р. широко используются в радиотехнике, электронике, электроакустике и др. в качестве фильтров, резонаторов в задающих генераторах, резонансных пьезопреобразователей и пьезотрансформаторов. Пьезоэлектриком в П. р. служит кристалл кварца или пьезо-керамика с малыми потерями. Кварцевые резонаторы применяются в качестве резонансных контуров генераторов злектрич. ВЧ-колебаний. Высокая добротность (10 — 10 ) кварцевого резонатора определяет малый уход частоты генератора от её номинального значения 1(10 — Ю )%] при изменении окружающей темп-ры, давления и влажности. Разработаны микроминиатюрные кварцевые резонаторы на частоты колебаний 30 кГц — 8,4 МГц, нашедшие применение в электронных часах, системах электронного зажигания двигателей внутр. сгорания и др. П. р. на основе кварца используются в акустоэлектронных устройствах фильтрации и обработки сигналов монолитных ньезо-электрич. фильтрах, а также фильтрах и резонаторах на поверхностных акустических волнах (ПАВ). Оси. достоинство резонаторов на ПАВ — возможность использования в устройствах стабилизации частоты и узкополосной фильтрации в диапазоне частот 100— 1500 МГц. Пьезоэлектрич. фильтры из пьезокерамики, как правила, многозвенные, изготавливают на частоты 1 кГц — 10 МГц. При этом на частотах до 3,5 кГц используют биморфные пьезоэлементы, когда П. р. совершает резонансные колебания изгиба по грани в  [c.192]


Акустоэлектронит. Основные задачи акустоэлектроники связаны с возбуждением, распространением и приемом высокочастотных волн в твердых телах, взаимодействием этих волн с электромагнитными полями. Из всех акустических волн наибольший интерес с точки зрения практических приложений представляют поверхностные акустические волны. Кроме того, важную роль волновые процессы в упругих телах играют в связи с задачами обработки сигналов, в частности в связи с созданием механических резонаторов и фильтров.  [c.15]

Отмеченные преимущества ПАВ и перспективность их применения в электронике и радиотехнике были быстро осознаны и способствовали расширению исследований в этой области. В частности, получили развитие приближенные инженерные методы расчета зависимости амплитудных и фазовых характеристик устройств, использующих ПАВ, от расположения излучателей и приемников на поверхности пьезокристалла [35, 36]. Весьма поле- -ными оказались акустоонтические методы исследования поверхностных волн [37—42]. Эффективный метод объемной дифракции света на ПАВ предложен и исследован независимо друг от друга Монгомери и Янгом [43], Богдановым и Яковкиным [44], В результате активной работы инженеров и физиков были созданы разнообразные устройства для обработки, хранения и передачи информации линии задержки, радиочастотные фильтры с ра,5-личными, зачастую уникальными фазовыми и частотными характеристиками, резонаторы, генераторные миниатюрные элементы кодирования и декодирования сигналов и т, и, [45]. Наличие довольно сильных нелинейных свойств, которые привносятся плазменной подсистемой в распространение волн, позволило реализовать ряд устройств на поверхностных волнах для нелинейно1[ акустоэлектронной обработки информации [45, 46].  [c.5]


Смотреть страницы где упоминается термин Фильтры акустоэлектронные на ПАВ : [c.151]    [c.22]   
Ультразвук (1979) -- [ c.45 , c.46 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте