Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения метода конечных элементов задачи теории поля

Уравнения метода конечных элементов задачи теории поля  [c.73]

Выбор именно этой задачи для иллюстрации реализации метода конечных элементов объясняется двумя причинами. Во первых, в этом случае относительно просто выводятся уравнения метода конечных элементов. Матрица [УС] легко вычисляется, а интегралы по границе области обращаются в нуль в силу задания нулевых граничных значений искомой функции. Во-вторых, концепции, используемые при рассмотрении кручения стержня некругового сечения, одинаково важны как для механических задач, так и для задач теории поля. Хотя теория кручения стержней представляет собой самостоятельный раздел механики деформируемого тела, используемые в ней дифференциальные уравнения аналогичны уравнениям, которые описывают перенос тепла и течение грунтовых вод.  [c.89]


Средние установившиеся температуры определяют по уравнению теплового баланса тепловыделение за единицу времени приравнивают теплоотдаче. При расчете теплоотдачи пользуются ее усредненными коэффициентами. Для решения более сложных тепловых задач (установления температурных полей в деталях машин, определения неустановившихся температур) используют методы, рассматриваемые в теории теплопередачи, в том числе методы подобия, комбинирования нз точных решений для элементов простых форм, методы конечных разностей и конечных элементов.  [c.18]

В последующих параграфах нашей главной целью будет разработка общих методов построения конечноэлементных моделей непрерывных полей и использование этих моделей при исследовании нелинейных задач строительной механики и механики сплошных сред. Уравнения, описывающие поведение сплошной среды, можно разделить на четыре группы 1) кинематические 2) динамические, например законы сохранения 3) термодинамические и 4) определяющие уравнения (уравнения состояния). Термодинамические принципы, излагаемые в гл. III, являются удобным средством получения общих уравнений движения и теплопроводности для конечных элементов сплошных сред. Определяющие уравнения устанавливают соотношения между кинематическими, динамическими и термодинамическими переменными и, таким образом, характеризуют материал, из которого состоит сплошная среда. Общие положения теории определяющих уравнений обсуждаются в гл. III, а в гл. IV и V рассматриваются определяющие  [c.13]

В работе [Р.68] рассмотрен метод расчета неоднородного поля индуктивных скоростей, в котором пелена моделировалась недеформируемой сеткой вихревых отрезков. На начальной стадии расчета маховое движение полагалось известным из эксперимента и вычислялись лишь аэродинамические нагрузки. Единственной неизвестной была циркуляция присоединенного вихря лопасти, которая определялась в конечном числе точек диска винта на различных азимутах и радиусах. С помощью теории тонкого профиля эта циркуляция выражалась через углы атаки, определяемые индуктивными скоростями и движением лопасти. Индуктивная скорость вычислялась по формуле Био — Савара и зависела от интенсивности элементов вихревого следа, определяемой в свою очередь циркуляцией присоединенного вихря лопасти. Таким образом, задача сводилась к решению системы линейных алгебраических уравнений для циркуляции присоединенного вихря в ряде точек диска винта. Поскольку таких точек требуется от 100 до 200, число уравнений в этой системе оказывается весьма значительным.  [c.666]


В данной главе дается вывод уравнений метода конечных элементов, основанный на минимизации некоторой интегральной величины. Мы начнем с рассмотрения небольшого примера, который иллюст]рирует вывод уравнений для узловых значений искомой величины в задачах теории поля. Затем на том же примере мы покажем, что процесс минимизации может быть завершен до вычисления интегралов по элементам. После рассмотрения примера дается общий вывод уравнений метода конечных элементов для трехмфных задач теории поля. Глава завершается общим выводом уравнений метода конечных элементов для задач теории упругости. Окончательные результаты как для задач теории поля, так  [c.66]

Решение задач теории упругости может быть проведено одним из двух методов С помощью первого метода решают дифференциальные уравнения с заданными граничными условиями. Второй метод заключается в минимизации интегральной величины, связанной с работой напряжений и внешней приложенной нагрузки. Для решения задач теории упругости методом конечных элементов используется последний подход. Если задача решается в перемещениях и на границе заданы их значения, то нужно минимизировать потенциальную энергию оистемы. Если задача решается в напряжениях с заданными на границе усилиями, то нужно минимизировать дополнительную работу оистемы. Общепринятая формулИ(ровка метода конечных элементов предполагает отыскание поля пб1ремещбний и тем самым связана с минимизацией по-тенциальной энергии системы при отыскании узловых значений вектора перемещений. После того как перемещения будут определены, можно вычислить компоненты тензоров деформаций и напряжений.  [c.79]

Кинематические ограничения, наложенные на перемещения точек модели, качественно характеризуют степень стеснения при совместном деформировании структурных элементов. Отметим, что наложение этих ограничений не единственно. Если предположить однородность поля перемещений по нормали к граням каждого структурного элемента в любом сечении куба (см. рис. 5.2), то для растяжения-сжатия модели получим завышенные характеристики жесткости. При этом расчет усложнится на порядок вместо 27 уравнений получим 81. Аналогичная модель трехмерноармированного материала была рассмотрена в работе [121]. Расчет констант для нее проводили методами теории упругости с наложением упомянутых выше кинематических условий на гранях каждого элемента. Решение граничной задачи методом конечного элемента  [c.138]

Метод конечных элементов для описания сплошных сред впервые был применен в середине 50-х годов XX столетия и с тех пор завоевал известность исключительно полезного инженерного метода. Он широко применяется в гидродинамике, теории поля, при расчете сложных напряженных состояний и в других областях. О распространенности метода конечных элементов можно судить, например, по работе Норри и де Ври [9], в которой приведено более 7 тыс. ссылок, содержащих указания на его применение в различных областях науки и техники. Хотя метод конечных элементов применяется для решения тех же задач, что и метод конечных разностей, основаны они на разных идеях. В методе конечных разностей проводится разностная аппроксимация производных, входящих в дифференциальные уравнения. Математическая основа метода конечных элементов — вариационное исчисление. Дифференциальное уравнение, описывающее задачу, и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается непосредственно. С этой точки зрения метод конечных элементов представляет собой неявное применение метода Ритца на отдельных отрезках. В методе конечных элементов физическая задача заменяется кусочно-гладкой моделью. В этом смысле метод конечных элементов позволяет инженеру использовать свое интуитивное понимание задачи. Чтобы изложить метод конечных элементов во всех подробностях, пришлось бы написать специальный учебник. Здесь мы ограничимся изложением лишь основ этого метода, практическое значение которого трудно переоценить. Более подробное описание метода конечных элементов можно найти в работах Кука [21 и Зенкевича и Чен-  [c.125]


Метод конечных элементов удивительно успешно применя ется в самых различных задачах. Он был создан для решения сложных уравнений теории упругости и строительной механики и оказался гораздо эффективнее метода конечных разностей. Сейчас активно разрабатываются и другие применения метода конечных элементов. Этот метод незаменим, если нужно учиты вать геометрические особенности областей — тогда ЭВМ ис поль зуется не только для решения системы уравнений, но в первую очередь для формулирования и построения дискретных аппроксимаций.  [c.7]

Результаты, полученные в полной нелинейной постановке, весьма немногочисленны. В [17] с использованием локального метода конечных элементов рассмотрена задача о движении крылового профиля под свободной поверхностью тяжелой жидкости конечной глубины. Решение в данной работе строится с приближенным учетом системы волн, возникающих в дальнем поле за профилем, и полученной на основе линейной теории. Для решения этой же задачи в [18, 19] использовался метод граничных интегральных уравнений. В [20] рассмотрена задача об определении гидродинамических реакций контура, движущегося на небольшой глубине. Жидкость идеальна, а распространение волн, генерируемых телом, описывается уравнениями Тулина, модифицированными с учетом ненулевого угла атаки. Численное решение осуществляется с помощью панельного метода, при этом используются нелинейные граничные условия на свободной поверхности и постулат Кутта - Жуковского в задней кромке профиля. Результаты расчетов хорошо согласуются с экспериментальными данными. Следует отметить, что волны, представленные в этой работе, далеки от максимально возможных для поверхностных гравитационных волн.  [c.127]


Смотреть страницы где упоминается термин Уравнения метода конечных элементов задачи теории поля : [c.66]    [c.254]    [c.122]    [c.66]    [c.66]    [c.102]    [c.394]   
Смотреть главы в:

Применение метода конечных элементов  -> Уравнения метода конечных элементов задачи теории поля



ПОИСК



Ван-дер-Поля метод

Задача и метод

Конечный элемент

Метод конечных элементов

Методы теории поля

ТЕОРИЯ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Теории Уравнения

Теория Метод сил

Теория поля

Уравнение Ван-дер-Поля

Уравнение конечное

Уравнение метода сил

Уравнения Элементы

Элементы теории поля



© 2025 Mash-xxl.info Реклама на сайте