Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испускание и поглощение излучения

Происходящих на стенках. Излучение внутри замкнутой полости находится в тепловом равновесии со стенками, т. е. должно существовать равновесие между испущенным и поглощенным излучением. Процессы, протекающие на атомном уровне при испускании и поглощении излучения в замкнутой полости, впервые были рассмотрены Эйнштейном в 1917 г. Он считал, что вероятность перехода атома из данного энергетического состояния в более низкое энергетическое состояние с испусканием фотона имеет вид  [c.321]


Постулаты Бора. В 1913 г. выдающийся датский физик Нильс Бор в работе О строении атомов и молекул предложил теорию атома водорода. Теория Бора хорошо известна она излагается во всех курсах физики. Поэтому мы лишь напомним вытекающие из этой теории формулы и затем сосредоточим внимание на интересующих нас вопросах испускания и поглощения излучения атомом.  [c.64]

Испускание и поглощение излучения по квантовой теории  [c.68]

В локальном термодинамическом равновесии индуцированное испускание и поглощение излучения зависят от энергетической яркости излучения, которое, вообще, говоря, отличается от излучения черного тела.  [c.175]

Испускание и поглощение излучения молекулой (двумя или более атомами, которые объединены в одно целое силами электрического взаимодействия)—более сложные процессы. Молекулы обладают большим количеством степеней свободы, чем атомы они могут вращаться и колебаться. Благодаря этому молекулы способны поглощать и испускать энергию. Разумеется, энергии вращения и колебания любой молекулы квантованы, как и следовало ожидать для атомных систем, ограниченных в пространстве.  [c.291]

Связь между, испусканием и поглощением излучения телами. Серое излучение  [c.389]

Испускание и поглощение излучения газами имеет избирательный (селективный) характер, т. е. их спектр является полосатым. На фиг. 148 дано схематическое сопоставление спектров излучения и поглощения абсолютно черного тела, серого тела и газа. Газы обладают также высокой степенью проницаемости, т. е. для газов коэффициент kx в формуле (19.16) сравнительно мал. Как известно, поглощение излучения связано с его взаимодействием с молекулами тела. Молекулы газа в период между столкновениями практически не взаимодействуют друг с другом и, следовательно, их взаимодействие с излучением являет- Черное излучение ся индивидуальным . В та-  [c.404]

ЭЙНШТЕЙНА ЗАКОН ТЯГОТЕНИЯ—см. Тяготение. ЭЙНШТЕЙНА КОЭФФИЦИЕНТЫ—коэф., характеризующие вероятности излучательных квантовых пере.ходов. Введены А. Эйнштейном в 1916 при рассмотрении теории испускания и поглощения излучения атомами и молекулами на основе представления о фотонах при этом нм впервые была высказана идея существования вынужденного испускания. Вероятности спонтанного испускания, поглощения и вынужденного испускания характеризуются соответственно коэф. Ai i, и Вц (индексы указывают на направление перехода между верх. и ниж. уровнями энергии). Эйнштейн одновременно дал вывод Планка зако-т излучения путём рассмотрения термодинамич. равновесия вещества и излучения и получил соотношения между  [c.497]


Испускание и поглощение излучения чистыми газами имеет четко выраженный избирательный, селективный, характер, т. е. их спектр является полосатым.  [c.527]

Испускание и поглощение излучения телом является объемным процессом строго говоря, поверхность тела сама по себе не испускает и не поглощает излучения. Она пропускает излучение, испускаемое внутренними участками тела, и излучение,  [c.44]

Закон Кирхгофа относится к испусканию и поглощению излучения в среде, находящейся в термодинамическом равновесии. Он устанавливает, что интенсивность излучения (г), испускаемого в некотором направлении в сре-  [c.64]

Вместо испускания и поглощения строго монохроматической линии с частотой ( А,а — Га, в) Й- экспериментально наблюдается испускание и поглощение излучения в некотором интервале частот с отличной от нуля шириной. Ширина линии, вообще говоря, зависит от условий эксперимента, например от давления и температуры исследуемого вещества, а также от его специфической материальной структуры. Основное значение имеет естественная ширина линии , к которой мы обратимся в первую очередь.  [c.270]

Испускание и поглощение излучения между двумя состояниями определяются в квантовой механике матричными элементами,  [c.95]

При высоких температурах в газах протекают разнообразные физические и физико-химические процессы возбуждение молекулярных колебаний, диссоциация, химические реакции, ионизация, излучение света. Эти процессы влияют на термодинамические свойства газов, а при достаточно быстрых движениях и достаточно быстрых изменениях состояния вещества на движение оказывает влияние и кинетика указанных процессов. Особенно важную роль при очень высоких температурах играют процессы, связанные с испусканием и поглощением излучения, и лучистый теплообмен. Перечисленные выше процессы часто представляют интерес и не только с точки зрения их энергетического влияния на движение газа они вызывают изменения состава газа, его электрических свойств, приводят к свечению газа и возникновению многих оптических эффектов и т. д. Изучению всех этих вопросов, всему тому, что составляет содержание вновь возникшей ветви науки — физической газодинамики , и посвящена значительная часть книги.  [c.11]

Разность между испусканием и поглощением излучения частоты v (на единичный интервал частот) и направления Й (на единицу телесного угла) в 1 сев в 1 сж стоит в правой части уравнения переноса излучения (2.28). Чтобы получить полную результирующую потерю знергии веществом в 1 см в 1 сек q, надо проинтегрировать эту величину по всему телесному углу и по всему спектру, т. е.  [c.125]

ИСПУСКАНИЕ И ПОГЛОЩЕНИЕ ИЗЛУЧЕНИЯ  [c.114]

Рассмотрим детектор излучения, основанный на измерении повышения температуры черного тела с площадью поверхности А при попадании на него потока излучения. Предполагая, что черное тело обменивается энергией с окружающей средой только путем испускания и поглощения излучения, определить минимальную возможную среднеквадратичную ошибку измерения интенсивности стационарного потока излучения, падающего за время 5.  [c.557]

Те самые задачи, которые подвели Лоренца, Планка, Эйнштейна и Бора к созданию квантовой механики и релятивистской теории, для своего полного и последовательного разрешения требуют понимания процессов испускания и поглощения излучения, а эти процессы должны описываться в рамках квантовой теории поля.  [c.7]

В 1916 г. в связи с анализом проблемы равновесного теплового излучения Эйнштейн дополнил квантовую теорию Бора количественным описанием процессов поглощения и испускания света. Новые понятия и представления, введенные Эйнштейном, полностью сохранили свое значение до наших дней и служат основой теоретического анализа большинства вопросов, касающихся интенсивности линий испускания и поглощения.  [c.730]

Итак, опираясь на общие законы теплового излучения, надежно подтвержденные опытом, и на новые квантовые представления о процессах испускания и поглощения света, Эйнштейн вывел формулу Планка и тем самым показал, что зарождавшаяся в то время квантовая теория находится в соответствии с одним из фундаментальных законов физики.  [c.737]


Определить заселенности У , уровней т, п атома, принимая во внимание вынужденное испускание и поглощение, обусловленные взаимодействием с монохроматическим полем, частота которого соответствует переходу т- п. Вычислить также поглощенную (излученную) мощность и коэффициент поглощения (усиления).  [c.907]

ПОЛОСТИ распространяется внутри нее, частично отражаясь от стенок, частично поглощаясь последними. В результате внутри полости установится равновесие между испусканием и поглощением и она будет заполнена электромагнитными волнами разной длины, поляризации и интенсивности, хаотически движущимися во все стороны. Выходя из отверстия, это излучение будет определять испускательную способность абсолютно черного тела, находящегося при температуре Т, равной температуре стенок.  [c.135]

Далее, процессы испускания и поглощения лучистой энергии в твердых (непрозрачных) телах происходят на поверхности. В газах же излучение и поглощение всегда протекают в объеме.  [c.169]

Законы испускания и поглощения описываются уравнениями квантовой механики, а законы распространения теплового излучения — уравнениями электродинамики. Подробное изложение всех этих вопросов не входит в задачу настоящей книги, и они рассматриваются лишь по мере надобности в связи с другими вопросами.  [c.3]

Если рассматривать излучение, как волновой процесс, то ввиду квантового характера явлений испускания и поглощения этот процесс может быть описан обычным уравнением волны с квантованной амплитудой.  [c.7]

Так, Планк предполагал, что излучение только испускается порциями. Он связывал это с особенностями механизма испускания излучения атомами и молекулами вещества. Само же излучение существовало, как полагал Планк, не в виде квантов, а в виде непрерывной сущности , в виде непрерывных электромагнитных волн в пространстве. Однако такие представления казались не вполне состоятельными, так как в этом случае непрерывная световая энергия должна была бы где-то ждать возможности порциоиного поглощения атомами вещества иначе говоря, непрерывная энергия должна была бы каким-то образом разбиваться на кванты перед поглощением (такое возражение выдвигал Пуанкаре). Под влиянием подобной критики Планк выдвинул так называемую гибридную гипотезу, согласно которой излучение испускается квантами, а поглощается непрерывно. Однако допущение столь разных физических механизмов испускания и поглощения излучения не могло не казаться довольно странным. Напрашивался единственный выход признать, что само излучение не непрерывно, а состоит из отдельных порций (квантов), Сделать такой вывод Планк все же не решился. Это сделал Эйнштейн.  [c.46]

К представлениям о световых квантах привели два направления исследований. Первое связано с проблемой теплового излучения, второе — с атомными спектрами. Первоначально эти направления развивались независимо друг от друга. Так было до 1916 г., когда появились фундаментальные работы Эйнштейна Испускание и поглощение излучения по квантовой теории и К квантовой теории излучения . В первой работе, опираясь на теорию Бора, Эйнштейн рассмотрел задачу о взаимодействии равновесного излучения с равновесной системой испускаюш,их и поглош,ающих атомов. Он показал, что для получения формулы Планка надо наряду с поглош,ением и спонтанным испусканием рассмотреть дополнительный процесс испускания, который может быть назван индуцированным (вынужденным). Во второй работе обоснована необходимость учитывать изменение импульса атома при испускании или иоглощении им светового кванта здесь же сделан вывод, что импульс светового кванта равен /ioj/с.  [c.68]

Вопросы, рассматриваемые в иастояш,ем параграфе, соответствуют содержанию указанных работ Эйнштейна и прежде всего его знаменитой работы Испускание и поглощение излучения по квантовой теории . Эта работа не только способствовала становлению квантовой оптики, но и заложила основы квантовой электроники — иаучно-техниче-ского направления, получившего развитие во второй половине нашего столетия.  [c.68]

Водяной пар. Пары воды оказывают влияние на испускание и поглощение излучения в промышленных топках, в струях ракетных двигателей, в камерах сгорания и в атмосфере Земли. В работе [69] приведены результаты измерений при низких тем-п ературах поглощения или испускания излучения парами воды для длин волн 1—3 мкм, а сильное поглощение или испускание в области 2,7 мкм было изучено несколькими исследователями [70—72]. Эдвардс и др. [73] представили результаты измерений интегрального коэффициента поглощения в области 1,38, 1,87, 2,7 и 6,3 мкм при температурах от 300 до 1100 К. На фиг. 2.27 приведен спектральный коэффициент поглощения водяного пара при 1000 К в области 2,7 мкм, полученный но измерениям Гольдштейна [74]. На фиг. 2.28, а, б приведены средние коэффициенты поглощения по Планку и Росселанду для инфракрасного излучения.  [c.121]

Вещество способоо испускать и поглощать излучение разных частот. Свойства вещества в отношении испускания и поглощения излучения характеризуются излучательной способностью т) и ко-аффициентом поглощения о.. Количество энергии, иалученной за единицу времени объемом дУ в направлении телесного утла dQ, удет пропорционально объему V и телесному углу dQ, т. е. равно  [c.89]

Остановимся подробнее на понятии теплового равновесия, очень важном для последующего изложения, в значительной мере связанного с изучением энергетики п юцессов излучения и поглощения света. Для этого полезно обратиться к термодинамическому рассмотрению явлений внутри замкнутой полости. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, излучающее световую энергию. Внутри полости возникнет электромагнитное поле и в конце концов ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опьгг в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электромагнитного поля в полости, как показано ниже, в состоянии равновесия определяется только температурой.  [c.400]


Попытки интерпретации сериальных закономерностей в спектрах испускания и поглощения атомов, а также анализ результатов исследования теплового излучения, фотоэффекта и ряда других явлений (см. гл. XXXII—XXXVI) привели к радикальному пересмотру представлений о законах, управляющих пове- дением микросистем — атомов, молекул и т. п., и имели чрезвычайно важное значение для физики в целом. В этой связи большой интерес представляет процесс становления квантовой теории, и в последующих параграфах (см. 207—209) рассмат-  [c.718]

До сих пор мы не обсуждали квантовую интерпретацию закономерностей, касающихся интенсивностей спектральных линий. Совпадение частот некоторых линий испускания и поглощения имеет в квантовой теории простое объяснение — такие линии приписываются переходам между одной и той же парой уровней. Однако вопрос о том, существует ли какая-либо связь между величиной коэффициента поглощения и интенсивностью линии испускания той же частоты, не находил ответа. Опыт показывает, далее, что интенсивности линий в спектре излучения одного и того же атома могут отличаться в десятки и сотни раз, причем в разных источниках по-разному. Например, в спектре свечения натриевой газоразрядной лампы, кроме желтых 1)-линий (X = 589,0 и 589,6 нм), присутствует больщое число других линий, тогда как в пламени газовой горелки возбуждаются почти исключительно Л-линии. И наоборот, существуют такие линии, для которых отнощение их интенсивностей практически одинаково во всех источниках света.  [c.730]

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла—Больцмана, а излучение — формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие происходит и обмен импульсами между атомом и полем — импульс изменяется в процессе испускания и поглощения фотона (см. 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.  [c.735]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

К формуле (2.2.1) Планк пришел, опираясь на формулу Вина (2.1.9) и исследуя равновесие между процессами испускания и поглощения электромагнитного излучения равновесным коллективом линейных гармонических осцилляторов (так называемых вибраторов Герца). Он рассматривал энтропию осцилляторов, в частности вторую производную энтронии S по средней энергии осциллятора < >. Обратная величина этой производной фактически есть средняя квадратичная флуктуация энергии  [c.43]

Резонансные процессы на переходах между уровнями атомных ядер. У атомных ядер, как и у атомов, имеются уровни энергии. На переходах между уровнями испускаются и поглощаются кванты излучения с энергиями при-л ерно от 10 кэВ до 1 МэВ. ( )жlO "—10 с ) это есть кванты 7-излучения или, проще, у-кванты. Казалось бы, что для у-квантов должны наблюдаться процессы ядерного резонансного поглощения и ядерной резонансной флуоресценции, аналогичные соответствующим процессам в атомной спектроскопии. Однако наблюдать ядерные резонансные процессы долго не удавалось. Это объясняется обсуждавшимся выше эффектом отдачи частицы (в данном случае атомного ядра) при испускании и поглощении кванта излучения (у-кванта).  [c.206]

Итак, для сравнительно мягкого у-излучения л 100 кэВ) относительный сдвиг линий испускания и поглощения оказывается соизмеримым с шириной самих линий. При более высоких значениях энергии перехода (для более жесткого у-нзлучения) относительный сдвиг линий может стать заметно больше ширины линий ведь  [c.206]

Мёссбауэр изучал ядерное резонансное поглощение 7-излучения в изотопе иридия с массовым числом 191 (1 Чг). В данном случае энергия перехода составляла 129 кэВ, доплеровская ширина спектральной линии при комнатной температуре была равна 0,1 эВ, что совпадало с величиной относительного сдвига линий испускания и поглощения. Желая уменьшить резонансное поглощение, Мёссбауэр охладил источник 7-излучения и поглотитель до 88 К. К своему удивлению он обнаружил, что резонансное поглощение при этом не только не уменьшилось, но, напротив, существенно усилилось. Усиление резонансного поглощения наблюдалось при неподвижных источнике и поглотителе оно исчезало, когда источник начинал двигаться относительно поглотителя со скоростью, равной всего нескольким сантиметрам в секунду.  [c.207]


Исследования Мёссбауэра показали, что спектры испускания и поглощения 7-излучения имеют для охлажденного вещества вид, представленный на рис. 8.12. Каждый спектр состоит из узкой интенсивной линии (ее называют теперь  [c.207]

При уничтожении фотонов происходит поглощение излу чения частицами веществами (квантовыми системами), при рождении фотонов происходит испускание излучения. Испускание может быть спонтанным или вынужденным. Таким образом, п-фотонный процесс представляет собой в общем случае сочетание вынужденных процессов (испускання и поглощения) с процессами спонтанного испускания.  [c.220]

Прежде всего отметим возможность испускания и поглощения атомами излучения, приходящегося на область радиочастот. Еще в 1928 г. Гротриан указал на существование в атоме водорода и сходных с ним ионов переходов, ведущих к испусканию сантиметровых электромагнитных волн. Это — переходы между тонкими подуровнями, характеризуемыми одним и тем же главным квантовым числом п, например 2 2рз/,2 S./ , 3 3 Ps/  [c.566]


Смотреть страницы где упоминается термин Испускание и поглощение излучения : [c.45]    [c.227]    [c.89]    [c.860]    [c.208]   
Смотреть главы в:

Задачи по термодинамике и статистической физике  -> Испускание и поглощение излучения



ПОИСК



Газ испускание поглощение и рассеяние излучения

Газ, испускание излучения

Излучения поглощение

Испускание 363—369

Поглощение

Связь между испусканием и поглощением излучения телами Серое излучение



© 2025 Mash-xxl.info Реклама на сайте