Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор диэлектрической проницаемости анизотропной среды

Тензор диэлектрической проницаемости анизотропной среды  [c.614]

ТЕНЗОР ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ АНИЗОТРОПНОЙ СРЕДЫ 615  [c.615]

Общие закономерности, касающиеся диэлектрической проницаемости анизотропной среды, сводятся к возможности представить всю совокупность значений тензора при помощи трехосного эллипсоида. Трем значениям диэлектрической проницаемости (соответствующим осям эллипсоида) соответствуют в кристалле три взаимно перпендикулярных направления, характеризующихся тем, что для них направления векторов В и Е совпадают. Эти направления называются главными направлениями кристалла. Если выбрать за оси координат X, у, 2 главные направления, то тензор диэлектрической проницаемости будет иметь диагональный вид  [c.40]


Анизотропная среда характеризуется тензором диэлектрической проницаемости второго ранга  [c.247]

Для анизотропного диэлектрика становится неверной простая зависимость D = кЕ ( г. — скалярная величина), которой пользу ются при описании любой изотропной среды. В этом случае связь между векторами D и Е задают бо.пее сложным соотношением, в которое входит тензор диэлектрической проницаемости. Она записывается следующим образом  [c.124]

Можно показать, что в средах, обладающих центром симметрии, величина у (ш) тождественно обращается в нуль. В таком случае пространственная дисперсия проявляется лишь благодаря тем членам в выражении (149.6) для (со, ft), которые квадратично зависят от составляющих волнового вектора ft. Эти слагаемые и обусловливают слабую анизотропию кубических кристаллов. Действительно, в кубических кристаллах, как уже говорилось ранее, тензор е/у (о)) сводится к скаляру, т. е. его главные значения одинаковы. Если же принять во внимание третью сумму в выражении (149.5), то главные значения полного тензора диэлектрической проницаемости Вгу (ев, ft) оказываются различными, и среду следует считать анизотропной.  [c.524]

В заключение рассмотрения вопросов теории остановимся кратко на особенностях взаимодействия света с трехмерными голограммами, записанными в анизотропных средах. Поскольку для записи трехмерных голограмм широко используются кристаллы, например ниобат лития, изучение этих сред играет весьма важную роль не только в вопросах теории, но также и в практических приложениях. Трехмерная фазовая голограмма, записанная в анизотропной среде, характеризуется не изменением показателя преломления, а вариациями тензора диэлектрической проницаемости, т. е. имеет существенно анизотропный вид. Свойства таких голограмм были наиболее подробно исследованы Степановым и др. [16—21].  [c.708]

Рассматривается метод описания анизотропной среды с помощью тензора диэлектрической проницаемости и осуществляется переход к главным осям тензора.  [c.262]

Из электромагнитной теории света известно, что взаимодействие световой волны с веществом состоит в смещении электрических зарядов под действием поля падающей световой волны. Если учесть, что вынужденные колебания электронов происходят в направлении колебаний электрического вектора световой волны, то станет ясным, что величины смещения электрических зарядов анизотропной среды должны зависеть от состояния поляризации. Для анизотропной среды направления вектора электрической индукции О и вектора напряженности Е не совпадают. Тензор диэлектрической проницаемости симметричен г у === хг уг == Существуют три направления, для которых вектор электрической индукции оказывается параллельным вектору Е. Эти направления называются главными осями тензора диэлектрической проницаемости. Если привести тензор вц к главным осям X, К, 7, то получим  [c.195]


Когда пластинка не деформирована, материал ее представляет изотропный диэлектрик с диэлектрической проницаемостью Ео- При деформации пластинки происходит изменение оптической симметрии среды, в результате чего тело становится оптически анизотропным и может быть описано введением тензора диэлектрической проницаемости е, . Согласно [85]  [c.243]

Известно, что такие теплофизические свойства, как теплопроводность и линейное тепловое расширение, изменяются в зависимости от направления. Анизотропия проявляется также в отношении электропроводности, электрической прочности, диэлектрической проницаемости и пьезоэлектрических свойств. В кристаллофизике 16, гл. 1 ] показано, что при помощи симметричных материальных тензоров второго ранга могут быть описаны следующие свойства или коэффициенты анизотропных сред теплопроводность, тепловое расширение, электропроводность, диэлектрическая проницаемость. Для этих свойств существует в ортотропных телах три независимых константы в главных осях.  [c.237]

В анизотропной среде диэлектрическая проницаемость является симметричным тензором и может быть приведена к главным осям  [c.7]

Комплексные диэлектрическая и магнитная проницаемости. В электродинамике среды, которые мы будем рассматривать, описываются двумя скалярными пар аметрами — диэлектрической проницаемостью е и магнитной проницаемостью р,. Этим исключаются из рассмотрения два класса сред — анизотропные тела и тела с пространственной дисперсией. В первых е и ц — тензоры. Во вторых такие локальные характеристики, вообще говоря, не существуют, они могут быть введены только для плоских волн и зависят от направления этих волн.  [c.12]

Магнитоактивными называются анизотропные гиротропные среды, приобретающие эти свойства под действием постоянного магнитного поля. Тензоры диэлектрической или магнитной проницаемости таких сред несимметричны. В магнитоактивной непоглощающей среде тензор эрмитов  [c.117]

При рассмотрении прохождения света через изотропную среду мы считали, что вектор электрической индукции О связан с вектором Е соотношением В = еЕ, где е — скалярная величина и, следовательно, О и Е имеют одинаковые направления. В общем случае оптически анизотропной среды направления векторов О и Е не совпадают друг с другом. Связь между ними задается через тензор диэлектрической проницаемости. Соотноще-ние между О и Е можно записать в виде  [c.40]

В ПВМС модуляция света осуществляется электрооптическими кристаллами, которые в присутствии электрического поля становятся анизотропными и пространственно неоднородными. Поэтому рассмотрим более подробно, как свет взаимодействует с анизотропной средой. В кристаллооптике такое взаимодействие характеризуется тензором диэлектрической непроницаемости а, который связывает напряженность электрического поля световой волны А с ее вектором электрической индукции D А = tD. Тензор а является обратным к тензору диэлектрической проницаемости ё, аё = 1, он, как и ё, — симметричный тензор второго ранга. Будем предполагать, что свет в кристалле не поглощается. Поскольку среди кристаллов, используемых в ПВМС, имеются оптически активные, рассмотрим достаточно общий случай двулучепреломляющего оптически активного кристалла без поглощения, для которого можно записать [7.8]  [c.133]

Здесь необходимо сделать замечание о влиянии дисперсии. Напомним, что в случае изотронных сред диэлектрическая проницаемость не является постоянной вещества, а зависит от частоты, и точно так же в анизотропной среде шесть компонент тензора диэлектрической проницаемости e,u изменяются с изменением частоты. Поэтому меняются не только значения главных диэлектрических проницаемостей ,,, 8 , но и направления главных осей. Это явление известно как дисперсия осей. Однако оно может возникать лишь в тех кристаллических структурах, симметрия которых не позволяет выделить предпочтительный ортогональный триплет направлений т. е. в крисгаллах моноклинной и триклинной систем (см. п. 14.3.1).  [c.616]


Во-первых, изложенная теория может быть обобщена на систему уравнений Максвелла. Некоторые трудности при этом возникают в связи с тем, что в отличие от скалярного волнового уравнеиия функция Грина для системы уравнений Максвелла сингулярна [175]. Поэтому при обобщении изложенной теории на случай электромагнитного поля приходится пользоваться специальными приемами для исключения особенностей (см. [175, 176] . Развитые выше методы начинают находить применения при решении различных конкретных задач. Так в [176] рассчитана пространственная дисперсия неоднородной среды, в работе [177] вычислен тензор эффективной диэлектрической проницаемости сильнонеоднородной анизотропной среды.  [c.497]


Смотреть страницы где упоминается термин Тензор диэлектрической проницаемости анизотропной среды : [c.529]    [c.261]    [c.247]    [c.103]    [c.698]    [c.653]    [c.19]   
Смотреть главы в:

Основы оптики Изд.2  -> Тензор диэлектрической проницаемости анизотропной среды

Основы оптики  -> Тензор диэлектрической проницаемости анизотропной среды



ПОИСК



Анизотропность

Диэлектрическая (-йе)

Диэлектрическая проницаемост

Диэлектрическая проницаемост среды

Диэлектрическая проницаемость

Диэлектрическая проницаемость анизотропной среды

Диэлектрическая среда

Диэлектрический тензор

Диэлектрический тензор анизотропной среды

Проницаемость

Среда анизотропная

Среда анизотропная диэлектрическая

Тензор диэлектрической проницаемост

Тензор диэлектрической проницаемости

Тензор проницаемое!ей диэлектрически



© 2025 Mash-xxl.info Реклама на сайте