Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрики изотропные

Граничные условия. Поставим перед собой задачу определения интенсивности отраженных и преломленных световых волн, а также их фаз и частот, опираясь на теорию поля Максвелла. Пусть плоская монохроматическая световая волна падает на плоскую, бесконечно простирающуюся границу раздела двух однородных изотропных прозрачных диэлектриков  [c.45]

Для анизотропного диэлектрика становится неверной простая зависимость D = кЕ ( г. — скалярная величина), которой пользу ются при описании любой изотропной среды. В этом случае связь между векторами D и Е задают бо.пее сложным соотношением, в которое входит тензор диэлектрической проницаемости. Она записывается следующим образом  [c.124]


Явление поляризации света, т. е. выделение световых волн с определенной ориентацией электрического (и магнитного) вектора, имеет место и при отражении или преломлении света на границе двух изотропных диэлектриков. Этот способ поляризации был открыт Малюсом, который случайно заметил, что при поворачивании кристалла вокруг луча, отраженного от стекла, интенсивность света периодически возрастает и уменьшается, т. е. отражение от стекла действует на свет подобно прохождению через турмалин. Правда, при этом не происходило полного погасания света при некоторых определенных положениях кристалла, а наблюдались лишь его усиление и ослабление.  [c.374]

Итак, пусть на границу раздела двух изотропных однородных диэлектриков падает плоская электромагнитная волна. В таком случае, как показывает опыт, от границы раздела диэлектриков будут распространяться две плоские волны — отраженная и преломленная.  [c.471]

В изотропных диэлектриках все элементарные дипольные моменты имеют одно и то же направление— направление поля. В этом случае векторную сумму в (8.10) можно заменить скалярной. Если смещение зарядов составляет Ал , то  [c.276]

Величину х= —1 называют относительной диэлектрической восприимчивостью. В изотропных диэлектриках векторов D, Е и Р имеют одно и то же направление, так что % и е — простые числа.  [c.277]

Для того чтобы получить более общее выражение для диэлектрической проницаемости, необходимо определить величину поля, действующего на молекулу. Эта задача является очень сложной, так как действующее поле существенно зависит от строения диэлектрика. В простейшем случае изотропной среды (точнее, для изотропного кубического кристалла) действующее поле Е связано со средним полем Е и поляризованностью Р следующим образом  [c.5]

Рассмотрим распространение плоской электромагнитной волны, падающей на плоскую границу, разделяющую две однородные непроводящие изотропные среды (диэлектрики). При этом будем предполагать, что обе среды бесконечны, иначе необходимо учитывать волны, отраженные от внешних границ сред. С такими волнами приходится считаться при отражении света от ограниченных поверхностей, например пластинок.  [c.12]

Для изотропного диэлектрика, когда ПЦЕ, эта работа  [c.28]

Первый член в этом выражении определяет работу на возбуждение электрического поля [ /(8п) — плотность энергии электрического поля в вакууме] второй член представляет собой работу поляризации в собственном смысле на единицу объема изотропного диэлектрика dW =—EdP.  [c.290]


Для изотропного диэлектрика, когда эта работа Ш =-- - Ж ia=3 , А=--L.  [c.25]

В изотропных веществах направления векторов Р и Е совпадают. Для анизотропных диэлектриков (кристаллы, текстуры) х зависит от направления Е направление Р образует с направлением Е в пространстве некоторый угол.  [c.86]

Полуволновые слои (без потерь), расположенные в однородной изотропной среде, являются неотражающими в некотором диапазоне углов падения волны на слой, который шире при вертикальной поляризации падающих воли и уменьшении кратности толщины слоя половине длины волны в диэлектрике.  [c.210]

Это означает, что вторая пластинка пропускает только ту часть света, поляризованного первой пластинкой, которая соответствует проекции электрического вектора Е поляризованного света на кристаллическую ось второй пластинки. Явление поляризации света имеет место также при отражении или преломлении света на границе изотропных диэлектриков (стекло, мрамор и т. д.).  [c.227]

Вот как можно определить электромагнитное поле, производимое в однородном изотропном диэлектрике заданными электродвижущими силами .  [c.104]

Закон Кулона между двумя точечными зарядами и <72 по линии, их соединяющей, действует сила F, пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния г между ними, В безграничном (однородном) изотропном диэлектрике F определяется формулой  [c.207]

Электрическим смещением называется вектор, определяемый для изотропных диэлектриков выражением  [c.208]

Вектор поляризации Р зависит от напряженности электрического поля Е, и для изотропных диэлектриков  [c.209]

Абсолютная диэлектрическая проницаемость (ГОСТ 19880—74) — величина, характеризующая диэлектрические свойства диэлектрика, скалярная для изотропного вещества, равная отношению Модуля электрического смеще-  [c.586]

Диэлектрическая проницаемость изотропного диэлектрика — скалярная величина е, равная отношению напряженности поля в однородном теоретически безграничном диэлектрике при неизменных значениях и расположении свободных электрических зарядов Е, создающих поле, к напряженности электрического поля в вакууме  [c.149]

Диэлектрическая проницаемость показывает, во сколько раз уменьшается сила электростатического взаимодействия электрических зарядов при переносе их из вакуума в однородный изотропный диэлектрик, если расстояние между зарядами сохраняется неизменным.  [c.149]

Удельное объемное электрическое сопротивление р — величина. равная отношению модуля напряженности электрического поля к модулю плотности тока, скалярная для изотропного вещества и тензорная для анизотропного вещества (ПОСТ 19880-74) [9]. Эта величина позволяет оценить электрическое сопротивление материала при протекании через его объем постоянного тока. Для практических измерений часто используют дольную единицу Ом см. Величина р низкокачественных диэлектриков при нормальной температуре и влажности находится в пределах 10 ...10 Ом м, для высококачественных — в пределах до l0 ...10 Ом м.  [c.160]

При отражении и преломлении естественного света от границы раздела двух изотропных диэлектриков происходит частичная поляризация его. Если угол падения равен углу Брюстера /g,  [c.245]

Рассматриваемый случай распространения SH-волн в составном пространстве имеет много общего с задачей об отражении и преломлении света в изотропных диэлектриках. Это позволяет переносить накопленные в электромагнитной теории результаты на случай упругих SH-волн. Особенно важна эта аналогия при энергетическом анализе процессов отражения и преломления.  [c.60]

Рассмотрим полость, заполненную однородной и изотропной диэлектрической средой. Если стенки полости поддерживаются при постоянной температуре Т, то они непрерывно испускают и поглощают энергию в виде электромагнитного излучения. Когда скорости поглощения и испускания энергии становятся одинаковыми, как на стенках полости, так и во всем объеме диэлектрика достигается равновесное состояние. Это состояние можно описать с помощью величины, называемой плотностью энергии р, которая представляет собой электромагнитную энергию, заключенную в единице объема полости. Поскольку мы имеем  [c.25]


Кроме того, в активных диэлектриках, как и в обычных, наблюдаются отражение и преломление света, вызванные оптической плотностью среды. Как в анизотропных, так и в изотропных средах происходят рассеяние и поглощение (абсорбция) света, а при изменении частоты световой волны наблюдается дисперсия — изменение коэффициентов преломления, отражения и поглощения света.  [c.27]

Предположение о том, что все диполи в среде равны и расположены параллельно, может быть оправдано в случае диэлектрика (поляризация атомов), однако в случае парамагнетика (ориентация ионов) оно неприменимо. Онзагер [28] показал, что среднее поле в месте расположения иона (при усреднении как по пространству, так и по времени) равно полю, вычисленному по формуле (7.12), однако оно не является полем, оказывающим на ион ориентирующее действие. Сам ион вызывает поляризацию окружающей его среды, а это приводит к появ [ению некоторотг составляющей поля в место расположения иона. Эта составляющая, названная Бёттхером [29] полем реакции , меняет свое направление вместе с диполем (если предполагать, что среда вокруг диполя является изотропной) поэтому она не приводит к ориентации иона (,х отя и приводит к появлению соответствующего члена в выражении для энергии). Задача состоит в том, чтобы вычислить поле в месте расположения одного из ионов в решетке в случае, когда сам ион отсутствует. Такое вычисление связано с большими трудностями. Онзагер для получения приближенного р( -шения заменил парамагнетик непрерывной средой, обладающей проницаемостью [1, со сферической полостью, объём которой равен объему отсутствующего иона. И этом случае из уравнений Максвелла можно получить соотношение  [c.432]

Определим элементарную работу изотропного диэлектрика при изменении в нем электрического смещения на dD. Рассмотрим диэлектрик с диэлектрической проницаемостью Е между пластинами площади S плоского конденсатора с расстоянием / между ними. Если на пластинах конденсатора находится заряд плотностью а, то электрическое смещение D и напряженность Е в диэлектрике равны D=An<3, =4яа/е, разность потенциалов между обкладками ф2 ф1 = /=4яа//Ё. При перенесении заряда de с одной пластины на другую внешние силы совершают работу (ф2-ф1 )de = rfde, поэтому работа диэлектрика равна  [c.290]

Коэффициент d (пьезомодуль) у одного и того же диэлектрика одинаков как для прямого, так и для обратного пьезоэффекта. В качестве пьезоэлектрических применяются материалы с ярко выраженными пьезосвойствами пьезоэлектрические монокристаллы и пьезокерамика. Обычная сегнетокерамика как изотропная среда не обладает пьазосвойствами. Для придания этих свойств сегнетокерамику поляризуют выдерживают в нагретом состоянии в сг льном постоянном электрическом поле [33, 34]. В итоге векторы спонтанной поляри-зованности доменов внешним полем ориентируются, из изотропного тела керамика превращается в анизотропное, обладающее устойчивой остаточной поляризованно-стью Рй, направление которой определенд поляризующим полем. Это приводит к появлению пьезоэффекта.  [c.558]

Пьезокерамические материалы являются поликристалличе-скими твердыми растворами титаната бария, цирконата тита-ната свинца и т. д., которые в исходном состоянии являются изотропными диэлектриками и не обладают пьезоэлектрическими свойствами. Такие текстуры будут обладать пьезоэффек-том в результате предварительной поляризации, которая осуществляется под действием сильного внешнего электрического поля при температуре ниже точки Кюри. Электрическое поле приводит к переориентации доменов в текстуре в направлении вдоль силовых линий поля, а предварительная поляризация появляется при снятии поля и охлаждении материала. Следует отметить, что направление поляризации является для поляризованной керамики осью симметрии бесконечного порядка, а пьезоэлектрические свойства будут наблюдаться в текстурах, принадлежащих группам симметрии оо, оот, оо2.  [c.236]

ПОПЕРЕЧНАЯ ВОЛНА — волна, у к-рой характе- ризующая её векторная величина лежит в плоскости, перпендикулярной направлению распространения волны (для гармонии, волн — волновому вектору к). К П. в. относят, иапр., волны в струнах или упругих мембранах, когда смещения частиц в них происходят строго перпендикулярно направлению распростраие- ВИЯ волн, а также плоские однородные эл.-магн, волны в изотропном диэлектрике иля магнетике в этом слу- чае поперечные колебания совершают векторы элек-1 трич, и магн. полей.  [c.86]

ЭЛЕКТРОСТРЙКЦИЯ—деформация диэлектрика, пропорциональная квадрату приложенного электрич. поля (или поляризации). Электрострикционная деформация не меняет знак при изменении направления поля на противоположное. При наличии обратного пьезоэлектрич. эффекта (линейной связи деформации и поля см. Пьеюэлек-трики) Э. выступает в качестве малой нелинейной добавки к нему. В отличие от пьезоэлектрич. эффекта, у Э. нет обратного эффекта, но есть термодина.мически сопряжённый эффект — изменение диэлектрической проницаемости пол действием механич. напряжения (аналог фотоупруго-сти), Коэф. Э. является тензором 4-го ранга, несимметричным по перестановке 1-й и 2-й пар индексов и симметричным по перестановке индексов внутри 1-й и 2-й пар. Тензор Э. характеризуется в общем случае (триклинная симметрия) 36 компонентами. Э. может иметь место в центросимметричных кристаллах и в изотропной среде. В сегнето-электриках с центросимметричной исходной (неполярной) фазой эффект Э. велик в области фазового перехода, а в сегнетоэлектрич. фазе пьезоэлектрич. эффект можно  [c.594]

Характеристикой электрострикционного эффекта в изотропном диэлектрике при постоянном внешнем давлении р является величина производной (dVIdE). В зависимости от условий, при которых осуществляется изменение Е — изотермических или адиабатных— величина (dV/dE) будет различной, причем, как это следует из (1-49),  [c.100]

Стекла, как правило, изотропны, по механическим свойствам характеризуются упругостью (напряжение пропорционально деформации) с последутощим хрупки.м разрушением при комнатной температуре и вязким течением (напряжение пропорционально скорости деформации) при повышенных те.мпературах по оптическим свойствам обычно прозрачные (для видимого ИК-, УФ-, рентгеновского и у-излучения) как правило, диамагнитны по электрическим свойствам большинство стекол - диэлектрики (силикатные стекла), но есть и полупроводники и др.  [c.50]


Абсолютная дгалектричесгая вое приимчивость — величина, характери-зующая свойство диэлектрика поляризоваться в электрическом поле, скаляр, ная для изотропного вещества, равная отношению модуля поляризованности к модулю напряженности электрического поля, и тензорная для анизотропного вещества. Относительная ди-электрическая восприимчивость — от-ношение абсолютной диэлектрической восприимчивости к электрической постоянной  [c.586]

В оптическом эффекте Керра двулучепреломление, индуцированное мощным излучением накачки, используется для того, чтобы изменить состояние поляризащ1и слабого сигнала при прохождении через изотропный нелинейный диэлектрик [5, 6]. Данный эффект можно применять в оптических затворах с пикосекундными временами срабатывания [8]. В световодах его впервые наблюдали в 1973 г. [12] с тех пор этот эффект привлекает большое внимание [13-20]. Принцип действия керровского затвора показан на рис. 7.1. На входе в световод излучения накачки и сигнальное излучение поляризованы линейно угол между направлениями их поляризаций равен 45°. Скрещенный поляризатор на выходе световода блокирует прохождение сигнала в отсутствие накачки. Когда накачка включается, разница показателей преломления для параллельных и перпендикулярных поляризационных компонент сигнала (по отношению к направлению поляризации накачки) становится другой из-за двулучепреломления, вызванного излучением накачки. Дополнительная разность фаз для двух компонент на выходе из световода проявляется в виде изменения состояния поляризации сигнального излучения, и часть сигнала проходит через поляризатор. Коэффициент прохождения сигнала зависит от интенсивности излучения накачки, и им можно управлять, просто изменяя эту интенсивность. Поскольку сигнал на одной длине волны может быть промодулирован накачкой на другой длине волны, этот прибор называется также керровским модулятором, и его можно применять в системах оптической связи и в оптических переключателях.  [c.179]


Смотреть страницы где упоминается термин Диэлектрики изотропные : [c.160]    [c.188]    [c.290]    [c.129]    [c.316]    [c.300]    [c.305]    [c.134]    [c.681]    [c.80]   
Справочник по электротехническим материалам Т1 (1986) -- [ c.18 ]



ПОИСК



Диэлектрик

Диэлектрик однородный изотропны

Изотропность

Поглощение звука в изотропных диэлектриках

Электромагнитное поле, вызванное в однородном изотропном диэлектрике данными электродвижущими силами



© 2025 Mash-xxl.info Реклама на сайте