Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводник нормальный

Индукцией магнитного поля В называется вектор, направление которого совпадает с направлением вектора магнитного момента свободной элементарной рамки с током, находящейся в устойчивом положении в данной точке поля. Вектор индукции равен силе, действующей на проводник, нормальный к вектору индукции длиной, равной единице, при протекании по проводнику тока единичной силы.  [c.237]


По-прежнему ограничимся случаем плоских волн. Рассмотрим нормальное падение волны на границу раздела, а затем исследуем наклонное падение и выведем законы отражения и преломления электромагнитных волн. Введем основные понятия и обозначения и получим фазовые и амплитудные соотношения на границе раздела двух диэлектриков (формулы Френеля). Используя полученные соотношения, решим ряд задач, научное и прикладное значение которых весьма велико. Распространяя метод на случай границы раздела диэлектрик — проводник, получим основные сведения об электромагнитной волне в проводящей среде. В заключение рассмотрим возникновение светового давления. Таким образом еще раз убедимся, что теория Максвелла позволяет получить информацию о весьма разнообразных физических явлениях.  [c.71]

Две встречные волны могут возникать различными способами. Наиболее простой и часто встречающийся случай — это отражение при нормальном палении электромагнитной волны от плоской поверхности идеального проводника (см. 2.5) или диэлектрика с большим показателем преломления.  [c.76]

При изменении внешних воздействий на равновесную гетерогенную систему вещество из одной фазы может переходить в другую, например из жидкости в пар, из одной кристаллической модификации в другую, из нормального проводника в сверхпроводник, из ферромагнетика в парамагнетик и т. д. Такие превращения вещества из одной фазы в другую при изменении внешних условий называются фазовыми переходами.  [c.233]

Применим уравнения Эренфеста (12.11) к переходу проводника из нормального состояния п в сверхпроводящее состояние s при отсутствии магнитного поля. Как известно, такие превращения осуществляются у некоторых проводников при определенной температуре Т . Сверхпроводимость можно разрушить, если наложить достаточно сильное магнитное поле Н .  [c.239]

В нормальном состоянии магнитная восприимчивость проводника исчезающе мала, поэтому 0 Н, T) = G 0, Г). Вдоль кривой критического поля, когда п н s находятся в равновесии, удельные термодинамические потенциалы обеих фаз одинаковы, поэтому из условия T) = Gs H , Т), определяющего Н Т), получаем  [c.241]

Удельная теплота перехода проводника из сверхпроводящего в нормальное состояние X=T S — Ss) равна нулю в нулевом поле и положительна при Яс>0. Таким образом, при изотермическом переходе сверхпроводника в нормальное состояние происходит поглощение теплоты, а при соответствующем адиабатном переходе образец охлаждается. На этой основе был предложен метод получения низких температур адиабатным намагничиванием сверхпроводника.  [c.242]


Туннелирование электронов через диэлектрический слой. Если два обычных проводника или сверхпроводника разделены тонким слоем диэлектрика толщиной 1- 2 нм (рис. 141), то через такой слой под влиянием сторонней ЭДС протекает электрический ток, вольт-амперная характеристика которого совершенно различна для нормальных проводников (сплошная линия) и сверхпроводников (штриховая линия) (рис. 142). По причинам, которые сейчас станут ясными, тонкий слой диэлектрика, разделяющий два проводника, называется туннельным контактом.  [c.375]

Схема расположения энергетических уровней туннельного контакта между нормальными проводниками при нулевой разности потенциалов на контакте (а) и при разности потенциалов  [c.375]

Единица измерения р - [Ом м]. Сопротивление проводников обычно много меньше, поэтому, чтобы не добавлять каждый раз множитель 10", используют [мкОм м]. Диапазон значений р для проводников (при нормальной температуре) от 0,016 до 10 мкОм м граничные значения соответствуют значениям р для серебра и некоторых сплавов. Для платины значение р  [c.11]

К жидким проводникам относятся, как правило, расплавленные металлы и различные электролиты. Большинство металлов (табл. 4.1) имеют достаточно высокую температуру плавления и поэтому являются жидкими проводниками при повышенных температурах. Среди металлов только ртуть, имеющая температуру плавления около —39 °С, может быть использована как жидкий проводник при нормальной температуре.  [c.112]

К жидким проводникам относятся расплавленные металлы н различные электролиты. Для большинства металлов температура плавления высока (см. табл. 7-1, в которой приведены приблизительные значения важнейших физических параметров металлов, представляющих интерес для электротехники) только ртуть, имеющая температуру плавления около минус 39°С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.  [c.187]

Теперь рассмотрим, как должны вести себя электроны, объединенные в куперовские пары, при возбуждении в проводнике электрического тока. В отсутствие тока все пары вследствие полной корреляции имеют импульс, равный нулю, так как они образованы электронами, имеющими равные по величине и противоположные по направлению импульсы. Возникновение тока не нарушает корреляции пар под действием внешнего источника, вызвавшего ток, все они приобретают один и тот же импульс и движутся как единый коллектив в одном и том же направлении с некоторой дрейфовой скоростью Уд. При этом поведение таких пар в металле существенно отличается от поведения обычных электронов, совершающих направленное движение. Нормальные электроны испытывают рассеяние на тепловых колебаниях и других дефектах решетки, что приводит к хаотизации их движения и является причиной возникновения электрического сопротивления. Куперовские же пары, пока они не разорваны, рассеиваться на дефектах решетки не могут, так как выход любой из них из строго коррелированного коллектива маловероятен. Пару можно вырвать из конденсата, лишь разрушив ее. Однако при очень низких температурах число фононов, обладающих достаточной для этого энергией, исключительно мало. Поэтому подавляющее большинство образовавшихся куперовских пар сохраняется неразрушенным. Не испытывая рассеяния при своем направленном движении, они обусловливают появление сверхпроводящего тока, текущего через сверхпроводник без сопротивления.  [c.200]

Нагреем теперь контакт А до температуры Гр > Гх, оставляя контакт В при температуре Т . В нормальных металлах и электронных полупроводниках повышение температуры вызывает понижение уровня Ферми (см. формулу (3.100) и рис. 6.4). Обозначим это понижение у проводника / через — Ац , у проводника 2 через  [c.257]

Проводники заземления прокладываются по стенам на расстоянии от них до 10 см, на нормальных расстояниях от фазных проводов и при их прокладке в каналах на расстоянии не менее 5 см от покрытия.  [c.179]

Иа участие фононов в возникновении сверхпроводимости указывает изотопический эффект. Данные табл. 7.4 также свидетельствуют о связи сверхпроводимости с электрон-фононным взаимодействием. Чем сильнее в нормальном металле электрон-фонон-ное взаимодействие, тем меньше его проводимость. Так, например, свинец является плохим проводником, но в то же время из-за сильного электрон-фононного взаимодействия он обладает высокой (для чистых металлов) критической температурой. Благородные металлы являются прекрасными проводниками. У них слабое элек-трон-фононное взаимодействие. Они не переходят в сверхпроводящее состояние даже при самых низких температурах, достивнутых в настоящее время.  [c.268]


Зондгеймер считает, что по существу в проводниках наблюдается три широких класса явлений, в которых обнаруживается масштабный эффект. Во-первых, это наиболее простое проявление масштабного эффекта, заклю-чающ,ееся в возрастании удельного сопротивления образцов, представляющих собой очень тонкие проволочки или фольги (ленточки), по сравнению со значением, которое оно имеет в массивном образце. Такое увеличение возникает вследствие ограничения нормальной средней длины свободного пробега электронов благодаря рассеянию па границах образца и может быть использовано для определения отношения I к физическому размеру образца а.  [c.204]

Интересно рассмотреть вопрос о toj[, ]гак переходит ток из нормального проводника в сверхпроводник. Иа анализа яилоний в нормальном  [c.699]

Ф и г. 2, Схема, иллюстрирующая 1Ц)ох0ждепие тока и.з нормального. мета.пла в сверхпроводник в случае проводника прямоугольного сечения (по данным Лондона [13]).  [c.699]

Подобные решения были найдены Лондоном ([13], стр. 37) для случая прохождения тока из нормальной области в сверхпроводящую в проводнике прямоугольного сечения Лауз ([37], г.а. 8) получил такое решение для соответствующего случая в проводнике кругового сечения. Фиг. 2 иллюстрирует карт1П1у распределения токов для случая Лондона.  [c.699]

Как уже было отмечено, лондоновская область может появиться только вблизи Тир,. С другой стороны, вблизи 7 кр. величина щели А является очень ма,лой, а так как при со/А > 1 металл мало отличается от нормального проводника, то лондоновская область не может продолжаться до самой критической температуры и, во всяком случае, ограничена сверху условием со < А.  [c.910]

Для осуществления эффектов Джозефсона не обязательно создавать контакт из диэлектрика. Аналогичный эффект наблюдается, когда проводники соединены тонкой перемычкой (МОС1ИКОМ или контактом) или тонким слоем металла в нормальном состоянии или полупроводника. Такие связи между сверхпроводниками называются слабыми. Сверхпроводники вместе со слабыми связями между ними называются слабосвязанными сверхпроводникам и.  [c.377]

Однако если в двухпроводной или коаксиальной линиях выполняются условия малости расстояния Ь между проводами по сравнению с длиной линии I и длиной волны к b l, Ь Х) и малости сопротивления проводников, то в линии сущестует только поперечная электромагнитная волна. Такая волна характеризуется тем, что векторы электрического и магнитного полей лежат в плоскости, перпендикулярной к направлению распространения, и в этой плоскости удовлетворяют двумерному уравнению Лапласа. Таким образом, в плоскости, нормальной к линии, распределение этих полей совпадает с распределением электрического и магнитного полей для статического случая. Поэтому для малых участков линии dx можно считать применимой теорию квазистатичесй их  [c.320]

Конечное значение р криопроводника при его рабочей температуре ограничивает допустимую плотность тока в нем, хотя эта плотность может быть намного выше, чем в обычных проводниках при нормальной или повышенной температуре. Криопровощшки, у которых при изменении температуры в широких пределах значение р изменяется плавно (без скачков), нельзя использовать в ряде устройств, основанных на триггерном эффекте появления и нарушения сверхпроводимости. Однако применение криопроводников в электрических машинах, аппаратах, кабелях и т. п. имеет существенные преимущества. Так, если в сверхпроводниковых устройствах в качестве охлаждающего агента применяют жидкий гелий, рабочая температура криопроводаиков достигается за счет более высококипящих и дешевых хладагентов — жидкого водорода или даже жидкого азота. Это значительно упрощает и удешевляет выполнение и эксплуатацию устройства.  [c.26]

Серебро. Среди металлов серебро — наиболее низкоомный проводник величина р = 0,016 ом Температурный коэффициент сопротивления TKR = 3,6 10 /1 град. Температура плавления серебра 960° С. Серебро отличается небольшой твердостью оно является высокопластичным металлом, легко претерпевающим упругие деформации. Его окисление на воздухе при нормальной температуре протекает весьма медленно, поэтому его используют для покрытий проводников в высокочастотных элементах. При высоких частотах сопротивление посеребренного проводника может быть в десятки раз ниже, чем медного. При повышенных температурах (свыше 200° С) серебро на воздухе начинает окисляться. Если в воздухе присутствуют сернистые соединения, то на поверхности образуется слой сернистого серебра AgjS с высоким удельным сопротивлением. Для защиты серебряного покрытия от окисления и воздействия сернистых соединений в некоторых случаях, на него наносят слой лака или весьма тонкий слой (толщиной доли микрона) палладия. Из серебра выполняют электроды слюдяных и керамических конденсаторов проводниковые элементы схем, провода высокочастотных катушек и т. п. Серебро является компонентом различных сплавов и контактных материалов.  [c.274]

Диапазон значении удельного сопротивления р металлических проводников (при нормальной температуре) довольно узок от 0,016 1ЛЯ серебра и до примерно 10 мкОм м для железохромоалюминие-. Еых сплавов, т. е. он занимает всего три порядка. Значения удель-юго сопротивления р некоторых металлов приведены в табл. 7-1. дельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом  [c.191]

Из результатов исследований последних лет в области сверхпроводимости важно отметить открытие того, что помимо понижения температуры появлению сверхпроводимости способствует и повышение давления у некоторых веществ, не переходящих при нормальном давлении в сверхпроводящее состояние, удалось обнаружить сверхпроводимость при воздействии на вещество высокого гидростатического давления. Установлены даже сверхпроводящие свойства не только у веществ, являющихся при нормальных условиях проводниками (прежде всего у металлов, сплавов металлов н интерметаллических соединений), но и у полупроводников (например, у анти-монида индия InSb —см. стр. 263, который имеет температуру сверхпроводящего перехода около 5 К при давлении около 30 ГПа). В Институте высоких давлений Академии наук СССР открыта сверхпроводимость у серы (Тс = 9,7 К) и ксенона (Т,. = 6,8 К).  [c.209]


Большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре больше, чем у проводников, но меньше, чем у диэлектрикор (табл. 8-1), относится к полупроводникам. Как было указано в В-1, электропроводность полупроводников в большой степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствуюш,их в теле собственного полупроводника.  [c.229]

При нормальной работе трехфазной воздушной линии с симметричной нагрузкой геометрическая сумма токов во всех проводах равна нулю, однако ввиду конечности расстояния токоведущих проводов между собой и от поверхности земли поблизости от воздушной линии электропередачи образуется магнитное поле, впрочем сравнительно быстро убывающее с расстоянием. Это магнитное поле наводит в расположенном поблизости проводнике поле с продольной напряженностью Ев, величина которой зависит не только от частоты f, величины рабочего тока I /в I, положения объекта, испытывающего влияние, и удельного электросопротивления грунта. В дополнение к этому здесь играют некоторую роль геометрическое расположение и расстояния между фазовыми проводами, между проводами и заземлительными тросами и между теми и другими и землей, а в случае многопроводных передач также и расположение фазовых проводов (форма мачты), нагрузка на отдельные токовые цепи и углы сдвига фаз между отдельными токовыми цепями.  [c.436]

Но в эксперименте абсолютного нуля достигнуть невозможно, и поэтому ученые следили за характером кривой электрического сопротивления при снижении температуры. Все измерения, проделанные на меди, серебре и других хороших проводниках электричества, полностью подтверждали изложенную выше точку зрения. И вот тут-то замерзшая, отвердевшая ртуть повела себя совершенно необычно. Пока сопротивление измерялось в диапазоне 15, 10, 5 градусов Кельвина, все шло нормально, как и в других исследованных металлах. Ониес снизил температуру до 4,1 К, взглянул на прибор, с помощью которого измерялось сопротивление, и поразился стрелка вольтметра указывала, что сопротивление образца равно нулю, хотя до температурного нуля оставалось еще больше четырех градусов  [c.149]

Используя формулы (1) — (7), соотношение Пиллинга-Бедвортса [3], а также учитывая связь сопротивления тонкопленочных проводников с геометрическими размерами неокис-леииой части, рассмотренную в работе [5], можно рассчитать изменение нормальных сопротивлений тензорезисторов, а по формулам (8) —(12) определить изменение во времени их относительных деформаций.  [c.103]


Смотреть страницы где упоминается термин Проводник нормальный : [c.9]    [c.634]    [c.699]    [c.240]    [c.240]    [c.167]    [c.167]    [c.169]    [c.284]    [c.10]    [c.56]    [c.242]    [c.93]    [c.207]    [c.211]    [c.25]   
Механика электромагнитных сплошных сред (1991) -- [ c.56 ]



ПОИСК



Проводник



© 2025 Mash-xxl.info Реклама на сайте