Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности аморфных сплавов

Аморфное состояние металлов метастабильно. При нагреве, когда подвижность атомов возрастает, протекает процесс кристаллизации, что постепенно приводит металл (сплав) через ряд мета-стабильных в стабильное кристаллическое состояние. Механические, магнитные, электрические и другие структурно-чувствительные свойства аморфных сплавов значительно отличаются от свойств кристаллических сплавов. Характерной особенностью аморфных сплавов являются высокий предел упругости и предел текучести при почти полном отсутствии деформационного упрочнения.  [c.372]


Особенности аморфных сплавов типа металл-металлоид  [c.260]

Свойства аморфных металлов и сплавов могут сильно изменяться в зависимости от их химического состава. То обстоятельство, что, в отличии от стабильного кристаллического состояния, при получении аморфного состояния можно достаточно произвольно смешивать многие элементы, весьма существенно отражается на особенностях аморфных сплавов, сильно отличающихся по свойствам от своих кристаллических аналогов. В этом смысле крайне необходима разработка методов прогнозирования составов аморфных сплавов.  [c.293]

Две важные особенности аморфных сплавов необходимо учитывать при оценке их способности к сверхпластической деформации, а именно, способность к стеклообразованию и устойчивость аморфного состояния [37]. Первая из них характеризуется, в основном, критической скоростью охлаждения расплава (dT/dx) и относительной температурой стеклования  [c.420]

З.1. ОСОБЕННОСТИ АМОРФНЫХ СПЛАВОВ  [c.380]

Механические и коррозионные свойства. Особенности атомной структуры металлических стекол, приводящие к отсутствию в них таких дефектов, как дислокации, границы зерен и т. д., обусловливают очень высокую прочность и износостойкость. Так, например, предел прочности аморфных сплавов на основе железа существенно больше, чем у наиболее прочных сталей. При испытании аморфных металлических сплавов на растяжение обнаруживается их удлинение, т. е. эти сплавы в отличие от оксидных стекол, являются пластичными.  [c.373]

Металлические аморфные сплавы обладают очень высокой коррозионной стойкостью. Особенно большую стойкость проявляют сплавы железа и никеля, содержащие хром. Высокая устойчивость металлических стекол к коррозии связана прежде всего с отсутствием границ зерен, включений и т. п.  [c.373]

Кристаллизация аморфных сплавов особенно активно изучается в связи с возможностью создания нанокристаллических ферромагнитных сплавов систем Fe—Си—М—Si—В (М—Nb, Та, W, Мо, Zr), имеющих очень низкую коэрцитивную силу и высокую магнитную проницаемость, т. е. мягких магнитных материалов.  [c.54]

Остановимся на некоторых трудных проблемах магнитномягких аморфных материалов. Одной из таких проблем, как отмечают авторы книги, является временная нестабильность проницаемости. Эта проблема стоит особенно остро в отношении аморфных сплавов с Х 0, где пиннинг границ доменов выражен весьма слабо, и поэтому стабилизация границ доменов вследствие направленного упорядочения по сути дела является лимитирующим фактором. В кристаллических материалах эта проблема решается сравнительно легко — путем снижения примесей внедрения углерода и азота. Ранее предполагали, что временная нестабильность проницаемости аморфных сплавов в районе климатических температур обусловлена атомами металлоидов [9]. Однако исследование сплавов с Я О, но не содержащих металлоиды, показало [20 с. 49], что и в этих материалах нестабильность проницаемости выражена весьма сильно. По всей видимости, атомной структуре аморфных сплавов, не зависимо от того, содержат ли они атомы металлоидов или нет, присущи некоторые дефекты, перестройка которых в зависимости от направления вектора намагниченности обеспечивает стабилизацию границ доменов и наведение одноосной анизотропии.  [c.17]


Повышенный интерес у советского читателя должна вызвать гл. 6, в которой подробно, на высоком научно-теоретическом уровне описаны электронные свойства аморфных сплавов — энергетические состояния электронов и явления переноса. В отечественной монографической литературе до сих пор этому вопросу уделялось недостаточное внимание. Электронная структура металла (как аморфного, так и кристаллического)—это его визитная карточка. На основе изучения электронной структуры аморфных сплавов вырабатывается понимание не только особенностей физических свойств этого нового класса веществ (электросопротивления теплоемкости и затухания звука при низких температурах теплопроводности зонного магнетизма и сверхпроводимости), но и понимание роли электронного фактора в формировании аморфного состояния и его стабильности.  [c.18]

Исчерпывающее описание и обсуждение особенностей механических свойств аморфных сплавов дано авторами в гл. 8. Высокая прочность в сочетании с пластичностью, способность к формоизменению при холодной прокатке, повышенный предел усталости и стойкость к радиационным повреждениям — все это выделяет аморфные сплавы как перспективный класс материалов с широким спектром практического использования.  [c.20]

Учитывая отмеченную особенность, можно с уверенностью сказать, что книга окажет также влияние на стимулирование интереса к проблеме аморфных сплавов у студентов соответствующих специальностей.  [c.22]

Таким образом, определение парциальных структурных факторов является эффективным способом выяснения особенностей и физической природы структуры аморфных сплавов. Однако, как можно судить из рис. 3.10, изменения вызванные изотопным  [c.68]

Представляет интерес вопрос о том, существует ли в аморфных сплавах типа металл — металл, так же. как в сплавах металл — неметалл, химический ближний порядок. Ведь в аморфных сплавах металл — металл размеры атомов, формирующих структуру, близки и, кроме того, связь между ними — металлическая. Все это может поставить под сомнение эффективность описанных в разделах 3.2.2 и 3.2.3 методов изучения структуры, поскольку непонятно, какова будет точность идентификации структуры ближнего порядка в этом случае. Однако используя некоторые особенности рассеяния нейтронов в сплавах металл — металл удается проследить колебания концентрации компонентов на атомном уровне. Ниже кратко рассмотрены результаты некоторых работ.  [c.75]

Как указывалось в разделе 5.3, индукция насыщения аморфных сплавов на основе железа мала по сравнению с индукцией насыщения у кремнистых сталей (Fe — 3% Si). Это в основном связано с тем, что суммарный магнитный, момент аморфных сплавов вследствие присутствия металлоидов сравнительно мал, а также с тем, что их температура Кюри довольно низка. До сих пор до конца не выяснено, каким образом магнитный момент и температура Кюри зависят от типа и количества металлоидов в сплаве. Детально изучается также влияние температуры на намагниченность. Здесь подробно рассматриваются главным образом четверные сплавы системы- Fe — (В, Si, С). Основные особенности этих сплавов состоят в следующем.  [c.169]

Как уже указывалось, явление магнитострикции имеет место и в том случае, когда ферромагнетик находится в аморфном состоя-иии. Для магнитномягких материалов важно было рассмотреть условия создания нулевой магнитострикции. Однако наличие большой магнитострикции можно использовать и как функциональное свойство с крайне интересной практической реализацией . Особенно интересной является возможность появления в аморфных сплавах большой магнитострикции в слабых магнитных полях. Впервые на  [c.174]

Особенности электросопротивления аморфных сплавов  [c.197]

Важным фактором, управляющим сложными закономерностями изменения электросопротивления аморфных сплавов, описанными в предыдущем разделе, является сорт компонентов сплава, причем в каждом температурном интервале этот фактор проявляется по-разному. До сих пор для объяснения этого привлекалась теория электросопротивления жидких металлов, в основе которой лежит учет взаимодействия электронов проводимости. В эту теорию внесены поправки, учитывающие, в зависимости от типа аморфного сплава и температурной области, наличие в аморфных сплавах различного рода дефектов. В этом разделе мы покажем, как с помощью теории Займана [56], позволяющей с успехом объяснить поведение сопротивления жидких металлов, можно также объяснить и некоторые особенности поведения электрического сопротивления аморфных сплавов, которые показаны на рис. 6.26, в  [c.202]


Возникает вопрос, какие особенности характерны для упругих постоянных аморфных металлов и в чем состоит их отличие от упругих постоянных кристаллических металлов Для ответа на этот вопрос прежде всего рассмотрим некоторые экспериментально определенные упругие постоянные кристаллических и аморфных металлов, приведенные в табл. 8.Ь К сожалению, из-за того, что аморфные металлы обычно получаются только в виде тонкой ленты, проведено довольно мало экспериментов по определению упругих постоянных аморфных металлов, а поскольку точность этих экспериментов низка, можно лишь качественно судить об их величине. Все же из таблицы видно, что модуль сдвига G аморфного сплава меньше на 30% и более, чем модуль сдвига того кристаллического металла, который является основой сплава. Такая же закономерность наблюдается и в отношении модуля Юнга. Во всех случаях модуль Юнга Е, модуль сдвига G, модуль объемной упругости В аморфных сплавов на 30—50% меньше, чем аналогичные величины для кристаллических металлов, входящих в соответствующий сплав в качестве его основы.  [c.224]

Важными особенностями аморфных металлов являются их высокие твердость и прочность. В табл. 8.2 приведены типичные значения этих величин для различных аморфных сплавов. Как твердость, так и прочность сильно изменяются в зависимости от химического состава сплава. Например, в сплавах на основе элементов подгруппы железа (Fe, Со, Ni) твердость HV может достигать значений >1000, а прочность — выше 4,0 ГН/м Эти значения больше, чем максимальные значения прочности и твердости используемых в настоящее время металлических материалов. Так, прочность проволоки из некоторых аморфных сплавов на железной основе примерно на 1,0 ГН/м выше прочности так называемой рояльной проволоки, что видно по диаграммам деформации, представленным на рис. 8.3. Значения <т/ для аморфных сплавов равны 0,02—0,03, что составляет почти половину от значения i t/ = 0,05, отвечающего теоретической прочности. Это существенно выше, чем для наиболее прочных из используемых ныне металлических материалов, для которых afE составляет всего лишь 10- —Например, прочность рояльной проволоки, как наиболее прочного из известных в настоящее время стальных изделий, приближается к 3,0 ГН/м . Поскольку ее модуль Юнга равен 210 ГН/м то получается, что а IE составляет не более 0,015. Далее, как видно из табл. 8.2, отношение твердости к прочности HV/ t составляет 2,5—3,0, что близ-Таблица 8.2. Твердость и прочность некоторых аморфных сплавов  [c.226]

Пластичность и вязкость аморфных сплавов существенно зависят от таких технологических особенностей, как продолжительность процесса изготовления, условия закалки и последующая термическая обработка. На рис. 8.17 приведены зависимости вязкости раз-  [c.236]

Эта точка зрения подтверждается тем, что относительное содержание дырок Бернала в полиэдрах, приведенных на рис. 3.23, в—д, точш соответствует 20%-ной концентрации атомов металлоида ( СМ. табл. 3.5), а также и тем, что1Сохра1няется СПУ- Струк-тура атомов металла и не возникает существенного понижения плотности при легировании атомами металлоида. При этом налагается запрет на соприкосновение ближайших металлоидных атомов. Таким образом прояснились некоторые характерные особенности аморфных сплавов металл — металлоид, а именно, что атомы металлоида оказываются, по мнению Полка, внедренными в центральные поры полиэдров из атомов металла в уже существующей СПУ-структуре.  [c.92]

Сплавы типа переходный металл VIIB и VIII группы Периодической системы элементов Д. И. Менделеева или благородный металл IB группы в сочетании с металлоидом (В, С, Si, Р). Эти сплавы в настоящее время наиболее важны в прикладном отношении, особенно аморфные сплавы на основе Fe, Со и Ni, которые являются основой магнитно-мягких аморфных материалов. Концентрационный интервал аморфизирующихся сплавов, как правило, довольно узок и располагается вблизи глубокой эвтектики 13—25% (ат.) металлоида. Введением дополнительных легирующих элементов (переходных металлов или металлоидов) склонность к аморфизации может быть существенно повышена, а концентрационный интервал аморфизации расширен или существенно изменен.  [c.159]

Для моделирования структуры аморфных металлов и сплавов предложен также метод, в котором в качестве начального (до процедуры статической релаксации) состояния используется молекулярно-динамическая модель расплава [25, 34, 35]. Преимущество этого способа состоит в том, что химическое упорядочение в аморфных сплавах, обусловленное особенностями межатомного взаимодействия, формируется автоматически уже на этапе построения модели исходной глобулы (равновесного расплава) и в дальнейшем наследуется структурой стеклообразного состояния. Отпадает необходимость постулировать характер химического упорядочения, как это делается в случае секвенционного построения исходной глобулы для сплавов типа металл — металлоид (Будро).  [c.15]

В книге приведены и обсуждены данные расчетов плотности состояния (ПС) электронов, основанных на различных моделях СПУ. Эти данные позволяют сделать ряд предположений об особенностях электронной структуры аморфных сплавов. Так, подчеркнуто, что количественный беспорядок (непостоянство направлений межатомных связей и межатомных расстояний) имеет существенное влияние на ПС. Интересно и то, что ПС Зй-электронов железа, никеля и кобаль-  [c.18]

Наибольший интерес представляют экспериментальные данные исследования электронной структуры аморфных сплавов, полученные с использованием спектроскопических методов. С помощью метода РФЭ было обнаружено, что плотность состояний на уровне Ферми N Er) в аморфных сплавах Pd — Си — Si и Pd — Si значительно ниже, чем N(Er) кристаллического Pd и что их РФС-спектры значительно отличаются, особенно в области Ег. Эти закономерности электронной структуры стали основой для формулирования известного критерия стабилизации аморфной структуры Нагеля-Тауца. Однако расчеты ПС электронов на основе моделей СПУ, как для чистых металлов, так и для сплавов (Fe — В) показали, что энергия Ферми Ef попадает в область максимума ПС. Детальный анализ парциальных плотностей состояний, отвечающих различным зонам, позволяет, по мнению авторов, сделать вывод, что данные спектроскопии (сплав Pd—Si) также не подтверждают электронный критерий стабилизации аморфной структуры, подразумевающий положение псевдощели в области Ег. Спектроскопические данные позволяют также предположить, что по крайней мере в сплавах Pd — Si перенос электронов от атомов Si к атомам Pd отсутствует, происходит перенос электронов только внутри атомов Pd.  [c.19]


В заключение описания вопросов, изложенных в гл. 9, отметим следующее. Во-первых, как и в случае обсуждения механических свойств, авторы не уделили должного внимания влиянию структурной релаксации на коррозионную стойкость аморфных сплавов. А это влияние достаточно велико (см. например, [43] ). Во-вторых, развиваемая авторами концепция высокой коррозионной стойкости аморфных сплавов не является общепризнанной. В частности, в СССР рядом авторов в развитие идей акад. Я- М. Колотыркниа отстаивается точка зрения, что. высокая коррозионная стойкость аморфных сплавов может быть обусловлена образованием на поверхности металла кластеров с сильно выраженными направленными связями [11, с. 43—45]. Высокая химическая стойкость и особенности электронной структуры этих кластеров обеспечивают сравнительно легкую пассивацию и соответственно высокую коррозионную стойкость аморфных сплавов. Кластерная концепция позволяет понять значение углерода, в формировании коррозионных свойств аморфных сплавов и большую разницу в коррозионной стойкости сплавов Fe —Сг — Р и Fe — Сг — Р — С [474 (в предлагаемой книге углероду в этом плане отводится неоправданно скромная роль). Интересно отметить, что по данным работы [463 в сплаве системы Fe — Ni — Сг — Р — В при фиксированных потенциалах пассивной области в растворе Na l на поверхности образуется пассивирующая пленка толщиной менее моноатомного слоя.  [c.21]

До сих пор мы обсуждали только те аморфные сплавы, которые могут быть использованы как магнитномягкие материалы. Однако, с точки зрения других функциональных магнитных свойств аморфные сплавы имеют, вероятно, также очень большие возможности, которые, правда, подробно пока не изучены. Упомянутое выше применение аморфных сплавов, полученных напылением, для производства лент магнитной записи указывает на одно из направлений практического использования особенностей этих материалов. Другими перспективными направлениями может служить использование быстрозакаленных аморфных лент в качестве магнитострикци-онных вибраторов и элементов в линиях задержки, а также в качестве инварных материалов, что и будет кратко рассмотрено ниже.  [c.174]

Вклад Зр-электронов кремния можно выделить в УФС-спектре Hel, поскольку в этом случае вклады Зр-электронов кремния и Ы-электронов палладия практически одинаковы, что видно из рис. 6.7 А и Z)). Примечательно, что особенности А mi D УФС-спектра аморфного сплава PdgiSiig в РФС-спектре не проявляются. Особенности В и С полностью идентичны в УФС- и РФС-спектрах. В работе [10] по данным Оже-спектроскопии установлено, что интервал энергии А—D составляет 5,5 эВ. Основываясь на этих результатах, авторы предположили, что профили, показанные на рис. 6.8, представляют собой ППС 4 -электронов палладия, Зр- и Зв-электронов кремния в аморфном сплаве PdsiSijg. Так как вклад Зр-электронов кремния в спектр РФС составляет <1% от вклада 4 -электронов палладия, то ППС 4 -электронов палладия Па, практически представляет собой весь РФС-спектр, показанный на рис. 6.8.  [c.183]

Как видно из рис. 6.8 в случае атомов кремния s- и р-электроны дают основной вклад в зону. Так, функция tis Зз-электронов кремния, соответствующая пику РФС-спектра появляется при энергии связи 15 эВ, измеренной от в-уровня вакуума. В функции ППС Зр-электронов кремния Пр появляются два пика, интервал между которыми равен 5,5 эВ, т. е. равен интервалу между особенностями А и D УФС-спектра. Точность вычислений профилей ris, Пр и п<г, показанных на рис. 6.8, отнюдь не высока, поэтому ПС в модели свободных электронов может существенно различаться. В частности, это может привести к тому, что величине Ер отвечает минимум N (Ер), как у Нагеля и Тауца. Так как Пр имеет высокое значение при —И эВ), то, вероятно, на формирование общих связей между атом ами палладия и кремния влияет более сильный фактор, чем образование псевдощели. Полученные Мидзутани 11] данные по электронной теплоемкости аморфных сплавов Pd — Si подтверждают этот, вывод. Однако механизм стабилизации аморфных сплавов Pd — Si, предсказываемый электронной теорией и подразумевающий образование псевдощели, на самом деле не работает.  [c.184]

Авторы работы [12], определив УФСнспектр воз буждения Не1 h = 21,2 э В) как функцию содержания )кремния в lalмqpфныx сплавах Pd—Si, установили, чтош ечо, лежащееиепосредстаенно над р-(что соответствует особенности Л на рис. 6.7), уменьшается по мере снижения концентрации кремния в сплаве. При этом положение пика, соответствующего 4 Электронам палладия, смещается в сторону низких значений энергии связи, хотя вид спектра 4 -зоны палладия почти не изменяется. Эти результаты приведены на рис. 6.9. В тройных аморфных сплавах Pd — Си — Si энергия связи, соответствующая положению пика в 4< -зоне, имеет минимум при содержании 16% (ат.) Si (рис. 6.10). Любопытно, что у сплавов этого состава резко возрастает способность к аморфизации при закалке в воду.  [c.184]

Изменение электросопротивления вышеупомянутых аморфных сплавов может быть разделено иа четыре температурные области Tминимум электросопротивления (она обычно составляет 10—20 К), во — температура Дебая аморфного сплава, Т лог —температура, при которой высокотемпературный ТКС начинает стремиться к насыщению, отклоняясь от закона Т или 7 . Особенности поведения электросопротивления и, в частности изменение знака ТКС, при отмеченных температурах иллюстрируются на рис. 6.34.  [c.201]

Сверхпроводящие материалы часто применяются в агрегатах ядерного синтеза. В ходе эксплуатации они подвергаются довольно сильному облучению. Следовательно, важной характеристикой та ких материалов является их устойчивость по отношению к облучению. Однако в кристаллических сверхпроводниках, и в особенности в сверхпроводящих химических соединениях, при, облучении резко снижаются как характеристики сверхпроводимости, так и механические свойства. Так, критическая температура Тс соединений NbsSn, NbsAl, NbgGe после дозы облучения 5-10 нейтронов на 1 см снижается от 18—20 К до 3—4 К [Й]. Сверхпроводящие же аморфные сплавы, вероятно, более устойчивы к облучению. Об этом можно судить хотя бы на том основании, что их электросопротивление после облучения практически не меняется [54].  [c.220]


Смотреть страницы где упоминается термин Особенности аморфных сплавов : [c.290]    [c.9]    [c.10]    [c.19]    [c.37]    [c.75]    [c.164]    [c.173]    [c.174]    [c.178]    [c.182]    [c.186]    [c.200]    [c.201]    [c.205]    [c.247]   
Смотреть главы в:

Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении  -> Особенности аморфных сплавов



ПОИСК



Аморфное юло

Сплав аморфные



© 2025 Mash-xxl.info Реклама на сайте