Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции и материал рабочих лопаток

Конструкции и материал рабочих лопаток  [c.225]

КОНСТРУКЦИИ И МАТЕРИАЛ РАБОЧИХ ЛОПАТОК  [c.225]

При конвективном охлаждении турбинных лопаток (рис. 28) охлаждающий воздух подводится через систему трубопроводов, полостей и отверстий к лопатке и, протекая во внутренних полостях лопатки, охлаждает металл стенок, а затем выпускается в газовый поток, движущийся в проточной части турбины. При этом способе охлаждения в пере лопатки выполняются с помощью точного литья или штамповки с вытяжкой полости в виде каналов сложной конфигурации. Подвод охлаждающего воздуха осуществляется к торцам сопловой лопатки или замку рабочей лопатки, а выпуск нагретого воздуха возможен в выходную кромку или вблизи нее на вогнутой поверхности для сопловых и рабочих лопаток, а также через периферийные торцевые поверхности для рабочих лопаток. В турбинах практически всех новых двигателей применены конструкции сопловых и рабочих лопаток, обеспечивающие для заданного уровня термодинамических параметров и свойств материала лопатки наиболее эффективное использование охлаждающего воздуха (радиальная, петлевая, многоходовая и другие схемы). В таких схемах существует постоянный перепад давления между входом и выходом воздуха и увеличение расхода воздуха сказывается только на температуре охладителя. Наконец, при больших расходах охлаждающего воздуха изменение его температуры и влияние этого изменения на температуру лопатки Т ет становится небольшим.  [c.53]


Свойства в поперечном направлении и конструкция рабочих лопаток турбин. Свойства эвтектических сплавов вдоль оси, перпендикулярной направлению преимущественной ориентации структуры, такие как прочность на сдвиг, поперечная прочность и пластичность, могут стать главным фактором, ограничивающим сферу применения таких композитов. Сдвиговые механические характеристики играют важную роль при выборе конструкции хвостовика турбинных лопаток, тогда как прочность на поперечное растяжение и длительная прочность материала могут влиять на термоусталостную долговечность самих лопастей турбинных лопаток.  [c.303]

Когда речь идет о влиянии кавитации на характеристики гидравлического оборудования, то наиболее важно рассмотреть кавитацию, влияющую на основной поток. Однако с точки зрения кавитационного разрушения местная кавитация может оказаться более важной, чем кавитация в основном потоке, поскольку она вызывает разрушение наиболее напряженных участков. Например, местная кавитация может вызвать разрушения в местах пересечения входных кромок лопаток и бандажа рабочего колеса турбины. Эти участки являются концентраторами высоких напряжений, и потеря даже небольшого количества материала на этих участках может привести к серьезным последствиям. С другой стороны, если первичная кавитация происходит в основном потоке рабочего колеса турбины, то она, вероятно, охватывает относительно широкую площадь на всасывающей стороне лопатки вблизи выхода. Из этой области могут быть удалены без опасных последствий для конструкции гораздо большие количества металла.  [c.629]

Одним из эффективных путей улучшения параметров двигателе является повышение температуры газов перед турбиной. В связи с этим возникает много проблем, связанных с обеспечением длительной и надежной работы элементов конструкции турбин. Прежде всего это касается рабочих лопаток, на напряженное состояние которых значительное влияние оказывают температурные напряжения. Температурные напряжения в лопатке возникают при неодинаковой температуре материала в поперечном сечении. Эти напряжения тем больше, чем больше разница между максимальной и минимальной температурой в сечении лопатки. Неравномерность температурного поля по сечению связана с конструкцией охлаждаюш,ей полости лопатки, с условиями подвода и отвода тепла. Так, например, на рис. 5.19 приведено распределение 248  [c.248]


В конструкции 3 зубья выполнены по отношению к пазам е зазорами Й1, /72, /7з, последовательно возрастающими от хвостовика к цоколю. При растяжении лопатки рабочие поверхности зубьев смыкаются с упорными поверхностями пазов ротора, нагрузка между зубьями распределяется более равномерно, отчего соединение становится прочнее. Практически в конструкции елочных соединений учитывают еще тепловые деформации, вызванные неравномерным нагревом лопаток и межлопаточных участков ротора, а также ползучесть материала хвостовика.  [c.587]

При подборе материалов для лопаток паровых турбин (при условии их удачной конструкции) не возникает проблем. Рабочая часть лопатки представляет собой в сечении криволинейный изогнутый продольно профиль, имеющий длину от 10 до 1800 мм. Как закрепленные, так и вращающиеся лопатки должны сопротивляться напряжениям, возникающим под действием пара, а вращающимся лопаткам сообщается также напряжение из-за действия центробежных сил. Нагрузка, действующая на вращающиеся лопатки со стороны пара при прохождении их через стационарные лопатки, оказывает влияние на величину возникающих циклических изгибающих напряжений, которые достигают максимума при совпадении их частоты с основной или гармонической частотой вибрации лопатки. Если это произойдет, резонансная вибрация вызывает напряжения, превышающие предел устойчивости материала, предусмотренный при изготовлении лопатки. Поэтому сопротивление усталости турбинных лопаток является такой важной характеристикой при расчетах. Если ограничения, накладываемые аэродинамикой на величину сечения, делают невозможным достижение достаточно высокой частоты для конструкции с простой лопаткой, то лопатки необходимо закреплять вместе группами. В американских конструкциях большие лопатки турбин промежуточного давления собирались в группы посредством выточек, которые стыковались с соответствующими выточками соседних лопаток и соединялись сваркой. В Великобритании большие лопатки обычно собирались в группы и сшивались проволокой. В местах, где проволока проходит через выточки, вы-штампованные и проточенные в лопатках, лопатки спаивают твердым припоем. Более маленькие лопатки соединяют на наружном ободе, изготовленном из полосового материала с отверстиями, в которых заклепывают верхние лопатки.  [c.224]

Что касается механических элементов при конструировании гидромуфт, то здесь необходимо отметить, что рабочие колеса обычно выполняются литыми из сплава алюминия или штампованными из листового материала. В последнем случае плоские лопатки привариваются или крепятся на заклепках. Широко распространен метод крепления лопаток с помощью шлицев, которые вставляются в корпус рабочего колеса и затем отгибаются. Преимущества каждой из указанных конструкций, литой или штампованной, определяются количеством выпускаемых муфт, возможностями данного производства и потребными материалами.  [c.290]

Собственные частоты лопаток зависят от многих факторов материала лопатки, жесткости, т.е. сопротивления изгибу, плотности набора на рабочем колесе, наличия проволочных связей и бандажа, частоты вращения. Поэтому, если в условиях эксплуатации лопатки теряют бандаж или проволоку, если ослабляется посадка на диске, то лопатки приобретают другую частоту вращения. При этом действует простое правило если конструкция облопачивания становится более жесткой, то частота собственных колебаний конструкции увеличивается и наоборот.  [c.432]

Паяные бандажные проволочные связи нашли свое применение в части низкого давления паровых турбин. В качестве материала рабочих лопаток и проволочных бандажей чаще всего используется 12%-ная хромистая нержавеющая сталь марки 1X13 или 2X13. Имеются отдельные примеры паяных конструкций лопаток с бандажами из аустенитных сталей.  [c.151]

В двигателе F100 используются титановые, бериллиевые и никелевые сплавы, многие элементы выполнены из слоистых конструкций с сотовым наполнителем. Для производства двигателя применяются новые технологические процессы, например направленная кристаллизация и применение жаростойкого покрытия материала рабочих лопаток турбины, ковка при постоянной температуре дисков турбины из порошковых материалов, которая дает возможность приводить высокопрочные сплавы во временное состояние сверхпластичности и получать высокую ковкость, и т. д.  [c.105]


Анализ основных параметров стохастической модели процесса накопления термоусталостных повреждений 7107 сопловых лопаток ТРД на заводах гражданской авиации, поступающих в первый ремонт, показал, что запуски больше повреждают материал лопатки, чем работа на установившемся режиме [5]. В работе [53] отмечено, что по интенсивности накопленных повреждений один запуск двигателя равен 3, 4 ч работы на режиме номинал , а 1 ч наработки на режиме взлет увеличивает интенсивность отказов в 4 раза больше, в сравнении с наработкой на режиме номинал . В связи с этим следует подчеркнуть, что с увеличением ресурса элезментов теплонапряженных конструкций и с повышением рабочих параметров режима эксплуатации и удельных мощностей доля повреждений от термических напряжений в общем объеме дефектов возрастает.  [c.17]

Накопленный к настоящему времени экспериментальный материал показывает, что эффективность сепарации существенно зависит отряда факторов относительной скорости рабочих лопаток м/со, давления среды (числа Re), отношения давлений на ступень е (числа Ма), геометрических параметров ступени (of// 3i ai 6 б и т. д.), конструкций влагоотводящих устройств и других факторов. В реальных условиях при изменении режима работы турбинной ступени величина ijj изменяется в 5 раз и более. Следует отметить, что по данным различных организаций при идентичных условиях испытаний влияние отдельных параметров на сепарацию получается неодинаковым. Очевидно, что для сепарации влаги из проточной части важным фактором является то, каким образом изменяется отношение скоростей и Со и другие безразмерные параметры. Действительно, увеличение uj o при со = onst приводит к росту центробежных сил, действующих на пленку, к более интенсивному дроблению соприкасающихся капель, изменению углов входа частиц влаги на рабочие лопатки. В то же время изменение Со (или располагаемого теплоперепада) ска-  [c.164]

Многоцикловая усталость. Справедливость мнения, что турбины подвержены действию многоцикловой усталости, впервые была признана в начале 20-х гг. Многоцикловая усталость рабочих лопаток и деталей камеры сгорания неизменно сопряжена с резонансными колебаниями. Поэтому первая задача конструкторов — определение собственной частоты колебания различных деталей, в первую очередь рабочих лопаток и камеры сгорания. Вторая задача— определить возбудители колебаний, подавить их и затем рассчитать результирующие напряжения. Поскольку форма деталей камеры сгорания и рабочих лопаток сложна, расчет частоты колебаний не так-то прост. Чтобы рассчитать частоту и моду колебаний, а затем и величину локальных напряжений, приходящихся на единичный подавитель и единичный возбудитель колебаний в лопатках, применяют компьютерную программу, в основу которой положена теория сложного пучка или метод анализа конечных элементов. Помимо сведений, необходимых для расчета температуры, конструктору нужны сведения о плотности, модуле Юнга и коэффициенте Пуассона материала. В некоторых конструкциях колебания настолько серьезны, что требуется расчет специальных подавляющих устройств. В качестве таковых используют механические приспособления в виде различного вида упоров распирающих комельные части соседних лопаток, установленных на диске данной ступени. Эффективность подобных устройств оценивают посредством испытаний. В паровых турбинах возбуждение колебаний на каждом обороте ротора может быть очень значительным при впуске пара не по всей окружности турбины. В крупных па-  [c.73]

Аналогичные процессы зарождения и развития трещины происходят при циклическом нагружении и в рабочих лопатках, однако, их условия работы даже при одинаковых напряжениях будут значительно отличаться от условий работы образцов они отличаются и размерами, и формой, и характером изменения напряжений по толщине и т.д. Поэтому простое использование результатов испытаний образцов для оценки надежности рабочих лопаток затруднительно. На этапе проектирования выход из создавшегося положения состоит в том, что в конструкции допускаются напряжения такие, чтобы материал работал при напряжениях ниже предела усталости с определенным запасом, и трещина не могла бы возникнуть. Тем не менее, опыт многочисленных поломок рабочих лопаток свидетельст-  [c.438]

В турбине была существенно изменена система воздушного охлаждения. Впервые выполнено охлаждение практически всех ее основных элементов, кроме пера рабочей лопатки второй ступени. Это было вызвано значительным увеличением температуры газа в цикле до 1330-1340К. Для рабочих лопаток применен новый материал ЖС6-К, а для дисков сплав ЭИ-698ВД. Из-за высокой температуры воздуха на выходе из компрессора возникали дополнительные трудности при его использовании в качестве охладителя. Воздух имел пониженный хладоресурс, и, следовательно, приходилось увеличивать его расход. За этим следовало некоторое снижение экономичности турбины и усложнение конструкции.  [c.171]

ДТРД RB.211 имеет одноступенчатый консольно расположенный вентилятор большого диаметра (йвен = 2170 мм), не имеющий ВНА. Конструкция корпуса вентилятора и вала способна противостоять нагрузкам, которые могут возникнуть при обрыве лопаток вентилятора. Рабочие лопатки изготовляются из титанового сплава. Фирма пыталась применить композитный материал, что должно было снизить массу вентилятора примерно на 140 кг. Вентилятор приводится трехступенчатой турбиной. Ротор турбовентилятора опирается на три подшипника, из которых передний и задний — роликовые, а средний — шариковый.  [c.142]


Сталь рекомендуется ЦНИИЧМ для турбинных лопаток и крепежных деталей, рассчитанных на длительную службу при температуре металла 650—680°, а также в виде листового материала для корпусных конструкций с рабочей температурой до 750°. Предназначается для замены стали ЭИ612.  [c.616]

Жесткая связь лопаток центростремительных турбин с дисками и большие градиенты температур (до 125° С) на коротких участках перехода лопаток в диск играют большую роль. В отличие от осевых, в центростремительных турбинах напряженное состояние лопаток тесно связано с напряженным состоянием диска [9]. Необходимо отметить, что наличие асимметрии диска с лопатками. устанавливаемыми только на одной его стороне, приводит к увеличению доли изгибающих усилий в балансе нагрузок на рабочее колесо центростремительной турбины, а значит и на ее лопатки. Расчеты, проведенные на предприятиях Средне-Уральского совнархоза [9], показали, что пренебрежение учетом влияния изгиба приводит к существенному уменьшению расчетных максимальных напряжений и, следовательно, к ослаблению конструкции (в частности, расчеты турбокомпрессора ТКР-23 показали, что если не учитывать изгиб, то уменьшаются радиальные и тангенциальные напряжения диска около втулки примерно в 1,5 раза). Однако роль изгиба нельзя и преувеличивать. Несомненно, более важным является то, что вследствие многообразия форм и частот собственных колебаний лопаток центростремительных турбин очень трудно в рабочем диапазоне турбокомпрессора исключить приближение частоты возмущающей силы к частоте какой-либо из форм собственных колебаний. При совпадении этих частот возникает, как известно, резонанс. Если при этом переменные напряжения превысят допустимый уровень, то разрушения лопаток неизбежны. Они имели место, например, при испытаниях турбокомпрессора ТКР-23, а также опытной центростремительной турбины турбокомпрессора Моссовнархоза, у которой усталостные трещины появились на входных кромках радиальных лопаток у галтели (3—4 мм от места перехода лопатки в диск). Тензометрированием в рабочих условиях было установлено, что причиной появления трещин являются переменные напряжения от вибрации, которые достигали а =< 20 кПмм и превысили допустимые в 3—4 раза. Резонанс наступал при совпадении частоты собственных колебаний лопаток турбины с частотой возмущающих сил (кратность колебаний совпадала с количеством сопловых лопаток). Создать условия, при которых напряжения от вибраций в рабочем диапазоне не превышали бы уровень, допустимый для выбранного материала, оказалось весьма трудным. По-видимому, эти трудности сдерживают широкое  [c.103]


Смотреть страницы где упоминается термин Конструкции и материал рабочих лопаток : [c.232]    [c.126]    [c.437]    [c.32]    [c.88]    [c.144]   
Смотреть главы в:

Паровые турбины  -> Конструкции и материал рабочих лопаток



ПОИСК



Конструкции рабочих лопаток

Лопатка

Лопатка рабочая

Материалы рабочих лопаток

Рабочие материалы



© 2025 Mash-xxl.info Реклама на сайте