Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность сварных соединений при динамических нагрузках

Однако при использовании результатов таких испытаний следует иметь в виду, что они не всегда в полной мере отражают реальные условия работы конструкций, в связи с чем критерии прочности сварных соединений при динамической нагрузке в ряде случаев окончательно еще не установлены.  [c.61]

Все сказанное свидетельствует о большой сложности установления критерия прочности сварных соединений при динамической нагрузке.  [c.62]


Для стыковых швов в подавляющем большинстве случаев должны быть обеспечены полный провар соединяемых элементов и форма усиления с плавным переходом от основного металла к металлу шва. Наличие плавного перехода от шва к основному металлу положительно сказывается на прочности сварного соединения при динамических нагрузках, изгибе и технологических операциях, связанных с вальцовкой и правкой. Для угловых швов необходимо выдерживать определенные расчетом размеры шва или минимальные размеры, назначаемые по технологическим соображениям. При назначении минимального сечения углового шва по технологическим соображениям исходят из возможности качественного вьшолнения такого шва в производственных условиях. Если сечение шва, определяемое по расчету, меньше сечения шва, назначаемого по технологическим соображениям, то оно должно быть доведено до величины последнего. Оптимальной считается вогнутая (рис. 5-1, а) или нормальная форма поверхности углового шва (рис. 5-1, б) с плавным переходом к основному металлу.  [c.173]

При механических испытаниях определяется прочность сварных соединений при статических (растягивающих или сжимающих) и динамических (ударных или вибрационных) нагрузках.  [c.692]

Навроцкий Д. И. Сравнение прочности сварных и клепанных соединений при динамических нагрузках. Судостроение ,  [c.301]

Форма сварного соединения имеет особенно большое значение для прочности сварных конструкций, воспринимающих динамическую нагрузку, а также для конструкций, работа которых происходит в условиях низких температур, при которых даже первоначально пластичный материал может потерять свои пластические свойства и перейти в хрупкое состояние.  [c.13]

Для выявления влияния обработки поверхности швов, которая иногда предлагается как средство повышения прочности сварных стыковых соединений при динамической нагрузке, были проведены дополнительные испытания сварных стыковых соединений с обработанной поверхностью швов.  [c.74]

Стыковые соединения элементов плоских и пространственных заготовок наиболее распространены. Соединения имеют высокую прочность при статических и динамических нагрузках. Их выполняют практически всеми видами сварки плавлением и многими видами сварки давлением. Некоторая сложность применения сварки с повышенной тепловой мощностью (автоматической под флюсом, плазменной струей) связана с формированием корня шва. В этом случае для устранения сквозного прожога при конструировании соединений необходимо предусматривать съемные или остающиеся подкладки. Другой путь - применение двусторонней сварки, однако при этом необходимы кантовка заготовки и свободный подход к корневой части сварного соединения. При сварке элементов различных толщин кромку более толстого элемента выполняют со скосом для уравновешивания  [c.289]


Применение качественных электродов необходимо для изготовления конструкций, подвергающихся динамической нагрузке, и для сварки конструкций, работающих в условиях высоких давлений и температур или корродирующей среды. Для дуговой сварки конструкционных и теплоустойчивых сталей применяют электроды согласно ГОСТ 9467—60, в котором для каждого типа электродов регламентированы механические свойства металла шва и сварного соединения. При проектировании конструкций достаточно указать принятый тип электрода, чтобы гарантировать необходимую прочность. При изготовлении сварных изделий можно применять электроды разных марок при условии, что они соответствуют заданному типу согласно стандарту.  [c.264]

Стыковые соединения (встык). Этот тип соединения элементов плоских и пространственных заготовок и узлов является наиболее распространенным. Соединения имеют высокую прочность при статических и динамических нагрузках. Их выполняют практически всеми способами сварки плавлением и многими способами сварки давлением. Некоторая сложность применения способов сварки с повышенной тепловой мощностью (автоматической под флюсом, плазменной струей) связана с формированием корня шва. В этом случае для устранения сквозного прожога при конструировании соединений необходимо предусматривать съемные или остающиеся подкладки. Другой путь — применение двусторонней сварки, однако при этом необходимы кантовка заготовки и свободный подход к корневой части сварного соединения. При сварке встык элементов различных толщин кромку более толстого элемента выполняют со скосом для уравнивания толщин, что обеспечивает одинаковый нагрев кромок и исключает прожоги в более тонком элементе. Кроме того, такая форма соединения работоспособнее вследствие равномерного распределения деформаций и напряжений.  [c.373]

Непровары являются опасными дефектами, так как снижают статическую и динамическую прочность сварных соединений. По данным проф. Г. А. Николаева, в стыковых швах конструкций работающих при статической нагрузке, глубина непроваров не должна превышать 10—15% толщины металла, а при динамической нагрузке — 5%.  [c.334]

Обычно рассматривается поперечное сечение шва н его размеры, которые указаны на рис. Х.4. Площади Ра и Рпр являются условными, так как металл шва образуется кристаллизацией расплавленного металла единой сварочной ванны. Размеры и форма сварного шва оказывают большое влияние на его стойкость против возникновения кристаллизационных трещин, на вероятность появления в шве дефектов и прочность сварного соединения, особенно при динамических нагрузках (см. главы П, IV). Например, при коэффициенте формы провара г з = Ь//х=1,3—6 вероятность образования в шве кристаллиза-  [c.292]

Точечные и роликовые сварные соединения во многих конструкциях, например автомобилях, судах, самолетах и т. п., кроме статических нагрузок, испытывают значительные динамические (переменные) нагрузки. При динамических нагрузках на прочность оказывают большое влияние факторы, которые при статических нагрузках проявляются незначительно.  [c.202]

Все больше внимания уделяют повышению прочности сварных конструкций, работающих при динамических и, в частности, переменных нагрузках, в условиях низкой и нормальной частоты, различных сред. Главное внимание уделяют повышению прочности сварных соединений и конструкций, работающих при переменных нагрузках определение методов термообработки, повышающих предел текучести материала устранение концентраторов при проектировании, путем технологической обработки — приданием рациональных очертаний швам в ЦНИИТМАШ, ИЭС им. Е. О. Патона разработаны различные методы механической поверхностной обработки сварных соединений (дробью, пучком проволок, взрывом и т. д.), повышающие предел выносливости сварных соединений при дуговой сварке в 2 раза, при точечной — более чем в 3 раза.  [c.15]

Влияние дефектов на работоспособность сварных соединений определяется многими конструктивными и эксплуатационными факторами. Так, например, при статической нагрузке и пластичном материале влияние размера непровара на потерю прочности примерно пропорционально относительному размеру этого непровара или его площади. При малопластичном материале, а также при динамической или вибрационной нагрузке влияние дефектов усиливается.  [c.342]


Механические испытания разделяют на три вида статические, когда нагрузка на испытываемый образец возрастает плавно динамические, когда нагрузка прилагается мгновенно, ударом и усталостные, когда к испытываемому образцу прилагают переменные по величине или по направлению усилия (циклическая нагрузка). Испытания производят на стандартных образцах, которые вырезают непосредственно из контролируемой сварной конструкции или из специально сваренных в таких же условиях контрольных образцов. Виды испытаний, методика их проведения, форма образцов определены государственными стандартами. В результате испытаний определяют предел прочности, относительное удлинение, угол загиба, ударную вязкость, твердость, усталостную прочность и другие показатели механических свойств металла сварного соединения. Некоторые ответственные сварные конструкции испытывают на конструктивную прочность, прилагая к ним нагрузки, превышающие эксплуатационные, и определяя, при какой нагрузке конструкция разрушается. Например, сварные емкости разрушают внутренним давлением жидкости - производят гидроиспытания. По результатам таких испытаний одного-двух изделий судят о необходимости доработки конструкции или технологий ее изготовления.  [c.36]

Условия испытаний различаются по виду нагружения (например, испытания на растяжение, изгиб, сплющивание) и по характеру нагрузки (статические, динамические, усталостные). Стандартные образцы могут в зависимости от целей испытаний вырезаться из различных зон соединения, например при испытании на растяжение - из наплавленного металла (вдоль шва) или поперек шва через все зоны сварного соединения. Если необходимо определить прочность той или иной зоны, то сечение образца в этой зоне ослабляют. Достаточ-  [c.342]

Результаты исследования показывают, что при статической нагрузке для пластичных материалов влияние величины непровара на уменьшение прочности прямо пропорционально относительной глубине непровара или его площади. Для малопластичных и высокопрочных материалов, а также при динамической или вибрационной нагрузках пропорциональность между потерей работоспособности и величиной дефекта нарушается. Непровар оказывает большое влияние на ударную прочность металла сварных швов. По данным Института электросварки им. Е. О. Патона непровар в 10 % толщины сварного соединения может на 50 % снизить усталостную прочность, а непровар в 40—50 % снижает пределы выносливости стали в 2,5 раза.  [c.242]

При точечной сварке, особенно когда соединение является ответственным и работает под динамической нагрузкой, очень важно выдержать постоянство размеров каждой точки. Это может быть достигнуто только при выборе наилучших технологических показателей режима точечной сварки. При изменении этих показателей прочность сварной точки изменяется.  [c.51]

Опыт эксплуатации сварных конструкций показывает, что технологические дефекты могут существенно снижать работоспособность сварных соединений.. В конструкциях, работающих в условиях статического нагружения, дефекты нередко становятся очагами хрупких трещин, возникающих при низких уровнях рабочих напряжений (сТраз < а , а в конструкциях, работающих при переменных нагрузках, они снижают предел выносливости сварных соединений. Механизм влияния дефектов на прочность в обоих случаях различен, в связи с чем влияние дефектов на прочность в условиях статического и динамического нагружения рассмотрено отдельно.  [c.277]

Установлено, что выпуклость шва не снижает статической прочности, однако очень влияет на вибрационную прочность. Чем больше выпуклость шва и, следовательно, меньше угол перехода от основного металла к наплавленному, тем сильнее оно снижает предел выносливости. Таким образом, чрезмерная выпуклость шва может свести к нулю все преимущества, полученные от оптимизации технологического процесса по улучшению качества сварных соединений, работающих при вибрационных, динамических и повторно-статических нагрузках.  [c.246]

Сварные соединения по прочности, как правило, не уступают прочности того металла, из которого сделаны изделия. Сварные конструкции хорошо работают при знакопеременных и динамических нагрузках, при высоких температурах и давлениях.  [c.4]

Сваркой можно получить сварное соединение прочностью выше основного металла. Поэтому сварку широко применяют при изготовлении весьма ответственных конструкций, работающих при высоких давлениях и температурах, а также при динамических (ударных) нагрузках — паровых котлов высокого давления, мостов, самолетов, гидросооружений, арматуры железобетонных конструкций и др.  [c.10]

Незаделанные кратеры. Незаделанные кратеры получаются в результате небрежного и неумелого выполнения сварки. В месте кратера толщина шва резко уменьшается, что вызывает понижение прочности сварного соединения. При действии динамической нагрузки разрушение шва почти всегда начинается  [c.220]

Подводя итог сказапно.му выше, можно считать, что прочности точечных сварных и клепаных соединений практически равны, что позволяет рекомендовать точечные соединения взамен клепаным. Клеесварные соединения имеют более высокую прочность как при статических, так и при динамических нагрузках и могут быть применены в самых ответственных силовых соединениях.  [c.213]

Требования к сварным соединениям. В соответствии с большим разнообразием назначений и условий работы приборов, весьма разнообразны и требования, предъявляемые к сварным соединениям, выполняемым контактной сваркой. К этим требованиям относится высокая и стабильная прочность при статической, вибрационной или динамической нагрузке при нормальной, низкой (иногда до —200° С и ниже), высокой (до 500° С и выше) или переменной температурах приемлевая герметичность при глубоком вакууме (до 10 —10 мм рт. ст. и менее) высоком (или значительно меняющемся) давлении хорошо проникающих газов (до 200— 300 кг1см и более) достаточная антикоррозийность при воздействии различных агрессивных сред высокая тепло- и электропроводность минимальная окислен-нос-ть, загрязненность, отсутствие на поверхности деталей прибора прилипших к ним частиц металла, сохранность плакирующего слоя, удовлетворительная точность геометрических форм и размеров (ничтожно малая деформация), правильное взаиморасположение деталей, точное размещение шва, отсутствие вмятин и заметного изменения сечения в месте сварки, минимальный нагрев свариваемых и соседних с ними деталей, благоприятная макро- и микроструктура (приемлемые размеры и правильное размещение литых ядер, отсутствие непроваров, пор, раковин, трещин, сильно перегретого металла, хрупки-х структурных составляющих). Многие соединения приборов должны удовлетворять одновременно нескольким из перечисленных требований,  [c.42]


Если по характеру работы возможны регулярные повторные подъемы одного и того же груза, то их следует учитывать при определении Л . Учет колебаний, возникающих в конструкциях в результате динамического приложения груза, производится лишь в случаях, когда 2 < N [0.13]. Число циклов напряжений элементов металлических конструкций см. в табл. 1.30. Допускаемые напряжения при расчетах на прочность даны в табл. 1.42—1.48 и при расчетах на выносливость — в табл. 1.49— 1.51 (запасы прочности см. в табл. 1.28). Для алю.чиниевых сплавов допускаемые напряжения основного металла, сварных, клепаных и болтовых соединений, приведенные в табл. 1.45—1.48, при температурах металла свыше 50 С должны быть умножены на коэффициент < 1. Нагрузки случая I, заданные в виде гистограмм (кривых распределения), заменяются эквивалентными нагрузками по (1.41).  [c.83]


Смотреть страницы где упоминается термин Прочность сварных соединений при динамических нагрузках : [c.212]    [c.299]    [c.12]    [c.63]    [c.122]    [c.303]   
Смотреть главы в:

Контактная электросварка лёгких сплавов  -> Прочность сварных соединений при динамических нагрузках



ПОИСК



Нагрузка динамическая

Прочность при динамической нагрузке

Прочность сварных соединений

Прочность соединений

Сварные Динамическая нагрузка

Сварные Прочность



© 2025 Mash-xxl.info Реклама на сайте