Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали нержавеющие питтинг

Коррозионному растрескиванию особенно подвержены высокопрочные стали, нержавеющие стали и сплавы, титановые, алюминиевые и магниевые сплавы, т. е. самые современные конструкционные материалы. Анодное растворение металла под напряжением на локальных, экстремальных его участках, имеющее термодинамическую возможность протекать до или одновременно с водородным охрупчиванием, с точки зрения электрохимии имеет много общего с питтингом.  [c.228]


Железо в почве корродирует о образованием мелких язв, коррозия нержавеющей стали в морской воде характеризуется образованием глубоких питтингов. Многие металлы в быстром потоке жидкости подвергаются локальной коррозии, называемой ударным разрушением, см. [1, рис. 1 на с. 328 и рис. 98 на G. 1107].  [c.27]

ПИТТИНГ И ЩЕЛЕВАЯ КОРРОЗИЯ нержавеющих сталей  [c.311]

Питтинг быстрее развивается на нержавеющих сталях с неоднородной структурой. У аустенитной стали склонность к пит-тингу также возрастает, если ее подвергнуть кратковременному нагреву до области температур, в которой образуются карбиды (сенсибилизации). Образованию питтинга в результате щелевой коррозии способствует также присутствие на поверхности нержавеющей стали органических и неорганических пленок или морских организмов, которые частично экранируют поверхность от доступа кислорода. Щелевая коррозия менее всего проявляется в морской воде, которая двигается с некоторой скоростью относительно поверхности металла [41]. При этом вся поверхность контактирует с аэрированной водой и равномерно пассивируется.  [c.312]

Рис. 18.4. Активно-пассивный элемент, ответственный за рост питтинга на нержавеющей стали в хлоридном растворе Рис. 18.4. <a href="/info/6877">Активно-пассивный элемент</a>, ответственный за рост <a href="/info/6691">питтинга</a> на <a href="/info/51125">нержавеющей стали</a> в хлоридном растворе
Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу.  [c.315]

Как указывалось в разд. 18.4, нержавеющие стали лучше всего применять в хорошо аэрированных средах, которые способствуют пассивации. Независимо от того, используют ли сплав в контакте с химическими веществами или в атмосферных условиях, его поверхность всегда следует поддерживать чистой — в противном случае начинающаяся коррозия в щелях может привести к питтингу и неравномерной коррозии. Аустенитные нержавеющие стали, которые при охлаждении слишком медленно проходят область температур сенсибилизации, ржавеют в атмосферных условиях.  [c.325]


Глубина питтинга на нержавеющей стали, помещенной в морскую воду, за год достигла 6,5 см. Какой средней плотности тока в вершине питтинга соответствует скорость его роста  [c.390]

Нержавеющая сталь представляет собой сплав на железной основе, в котором главным легирующим компонентом является хром в количестве не менее 12 %. Благодаря содержанию хрома нержавеющей стали легко пассивируются и потому имеют хорошую коррозионную стойкость во многих часто встречающихся средах. Однако в неблагоприятных условиях даже нержавеющие стали могут подвергаться, например равномерной, щелевой, межкристаллитной коррозии, питтингу или коррозионному растрескиванию под напряжением.  [c.109]

Если нержавеющая сталь используется в среде с высоким содержанием хлорида, например в морской воде или в отбеливающих растворах, используемых в целлюлозно-бумажной промышленности, то часто возникает локальная коррозия, принимающая форму питтинга (рис. 102), который иногда вызывает перфорацию стенок трубы, или щелевой коррозии, например во фланцевых соединениях (см. рис. 22). Коррозия этих двух типов рассмотрена ниже.  [c.111]

При питтинге поляризационная кривая нержавеющей стали изменяется (рис. 103). Если потенциал превышает некоторую критическую величину, именуемую потенциалом пробоя (/), то плотность тока начинает расти, а на кривой возникает серия пиков. Поскольку этот подъем означает начало питтинга, потенциал пробоя в этом случае называют потенциалом питтинга . Если потенциал после пробоя понизить, то снова достигается пассивация, но только при потенциале репассивации (2), который несколько ниже, чем потенциал питтинга. Аналогично развивается коррозия в зазорах или под поверхностными осадками. Достаточно высокий потенциал, при котором такая коррозия начинается, может быть достигнут, как в описанном случае, вследствие наличия вспомогательного электрода и приложенного напряжения или под действием окислителя, например кислорода в растворе. Потенциал пробоя не является какой-то постоянной величиной, а существенно зависит от таких условий, как концентрация хлорида, температура и метод измерения.  [c.112]

Рис. 104. Питтинг нержавеющей стали Рис. 104. <a href="/info/6691">Питтинг</a> нержавеющей стали
Нержавеющая сталь Условия экспозиции Средняя скорость общей коррозии, мкм/год, при экспозиции Средняя глубина 20 наибольших питтингов . мм. за время Максимальная глубина питтинга мм, за время U X со S gs э а а S 5 о X а п  [c.59]

Выше уже подчеркивалось, что щелевая коррозия ц питтинг являются типичными формами коррозионного разрушения нержавеющих сталей в морской воде. Как правило, началом процесса при этом служит об-  [c.65]

Рис. 35. Зависимость общей и питтинговой коррозии нержавеющей стали 304 в щелевых условиях на разных глубинах от площади металла вне щели [34]. Максимальная глубина питтинга 3.18 мм соответствует перфорации Рис. 35. <a href="/info/567366">Зависимость общей</a> и <a href="/info/48441">питтинговой коррозии нержавеющей стали</a> 304 в щелевых условиях на разных глубинах от площади металла вне щели [34]. Максимальная глубина <a href="/info/6691">питтинга</a> 3.18 мм соответствует перфорации
Влияние температуры раствора на развитие питтинговой коррозии представляет большой интерес. Улиг отметил, что в нейтральных растворах Na l для нержавеющих сталей скорость коррозии проходит через максимум при 90°С [И]. Повышение температуры раствора может привести к изменению характера питтинговой коррозии стали. Например, Стрейчер наблюдал, что с повышением температуры раствора до 50 °С положительное влияние добавок молибдена на стойкость стали к питтинговой коррозии полностью исчезает. На стали с добавками Мо, пит-тингов образуется даже больше, чем на обычной стали типа 18—8 [61]. С повышением температуры на нержавеющих сталях число питтингов резко возрастает, а их средняя и максимальная глубина остается практически постоянной. При 60—70 °С на поверхности стали образуется много мелких питтингов, глубина которых не превышала 0,1 мм. Отсутствие изменения глубины ниттинга объясняется увеличением числа центров, в которых сталь активируется. При этом ток катодной реакции восстановления окислителя распределяется на большее число анодов, Таким образом повышение температуры как и агрессивности раствора способствует постепенному переходу к развитию более общей коррозии.  [c.99]


На практике катодная защита может быть применена для борьбы с коррозией таких металлов, как сталь, медь, свинец, латунь и алюминий во всех видах грунтов и особенно в водных средах. Она может эффективно использоваться для предотвращения коррозионного растрескивания (например, латуни, стали, нержавеющих сталей, магния, алюминия), коррозионной усталости (но не просто усталости), межкристаллитной коррозии (например, дюралюминия, нержавеющей стали 18-8), обесцинкова-ния латуней и питтинга (например, нержавеющих сталей в морской воде или стали в грунтах). Катодная защита не предупреждает коррозию выше ватерлинии, например у резервуаров для воды, так как наложенный ток не протекает через поьерхность металла, не контактирующую с электролитом.  [c.173]

Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах.  [c.174]

Повышение содержания хрома в стали снижает наблюдаемую потерю массы в различных грунтах но при содержании Сг > б % глубина питтингов возрастает. В 14-летних испытаниях стали, содержащие 12 % и 18 % Сг, были сильно повреждены питтингом. Нержавеющая сталь типа 304 (18 % Сг, 8 % Ni) почти не была затронута питтингом (глубина 0,15 мм). В 10 из 13 исследованных грунтов не наблюдалось и значительной потери массы, однако в остальных трех грунтах по крайней мере один из образцов толщиной 0,4—0,8 мм был перфорирован питтингом. Четырнадцатилетние испытания нержавеющей стали типа 316 показали ее устойчивость к питтингу в 15 грунтах, однако можно предположить, что при более длительных испытаниях возможны пора-  [c.184]

Для пассивных металлов критерий защиты иной. Поскольку такие пассивные металлы, как алюминий или нержавеющая сталь, при низких скоростях коррозии растворяются равномерно, а при высоких — с образованием питтингов, их катодная защита обеспечивается уже при поляризации до значений более отрицательных, чем критический потенциал питтингообразования (см. разд. 5.5.2). Последний лежит в пассивной области, и его значение тем ниже, чем выше концентрация С1"-ионов в 3 % растворе Na l его значение для алюминия составляет —0,45 В.  [c.227]

Ввиду того, что пассивность. железа и нержавеющих сталей нарушается галогенид-ионами, невозможна анодная защита этих металлов в соляной кислоте и кислых растворах хлоридов, где плотность тока в пассивной области очень велика. Кроме того, если электролит загрязнен ионами С1 , существует опасность образования питтингов даже при достаточно низкой плотности пассивного тока. В последнем случае, однако, достаточно поддерживать потенциал ниже критического потенциала питтинго-образования для данного смешанного электролита . Титан, который имеет высокий положительный критический потенциал питтингообразования в широком интервале концентраций С1 -иона и температур, пассивен в присутствии С1 -ионов (низкая /пасс) и может быть анодно защищен даже в растворах соляной кислоты.  [c.229]

Если в среды, в которых нержавеющие стали пассивны, ввести некоторое количество ионов С1 или Вг , то в этих составах все нержавеющие стали проявляют склонность к локальной коррозии с образованием глубоких язв. Такие ионы, как тиосульфат S2O3", также могут вызывать питтинг. В растворах, в которых пассивность не достигается, например в деаэрированных растворах хлоридов щелочных металлов, в неокислительных растворах хлоридов металлов (Sn lj или Ni lj) или в окислительных растворах хлоридов металлов при низких pH питтинг не наблюдается даже в тех случаях, когда в кислых средах отмечается заметная общая коррозия.  [c.311]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

В хлоридных растворах, содержащих такие активные ионы-деполяризаторы как Fe +, u +, Hg +, при комнатной температуре видимые питтинги на нержавеющих сталях появляются за несколько часов. В некоторых случаях такие растворы применяют при ускоренных испытаниях на склонность к питтингообразо-ванию.  [c.311]

Многие анионы, будучи добавлены в хлоридные растворы, в большей или меньшей степени ингибируют питтинг. Выше, например, отмечалось (см. разд. 5.5.3), что введение 3 % NaNOs в 10 % раствор Fe lfl обеспечивает полную защиту нержавеющей стали 18-8 как от питтинга, так и от общей коррозии по крайней  [c.311]


Появление питтинга приводит к образованию активно-пассивного элемента с разностью потенциалов 0,5—0,6 В. Большая плотность тока в этом элементе отвечает высокой скорости коррозии в питтинге, являющемся анодом. В то же время участки сплава, непосредственно прилегающие к питтингу, находятся при потенциалах ниже критического значения. При протекании тока ионы С1" поступают в питтинг, образуя концентрированные растворы хлоридов железа (И), никеля и хрома (III). В результате их гидролиза раствор в питтинге подкисляется (рис, 18.4). В области накопления анодных продуктов коррозии нержавеющей стали 18-8 в 5 % растворе Na l при плотности тока 200 А/м (0,02 А/см ) измеренное значение pH = 1,5 [43].  [c.313]

Высокая концентрация ионов С1 и низкое значение pH поддерживает питтинг в активном состоянии. В то же время высокая плотность растворов, содержащих продукты коррозии, обусловливает их вытекание из питтинга под действием силы тяжести. При контакте этих продуктов с поверхностью сплава пассивность в этих местах нарушается. Это явление объясняет часто наблюдаемую на практике форму питтинга, удлиненную в направлении действия силы тяжести (течения продуктов коррозии). На пластинке нержавеющей стали 18-8 после выдержки в морской воде в течение 1 года была обнаружена узкая бороздка, протянувшаяся на 6,35 см от начальной точки (рис. 18, 5, а). Возникновение коррозионных разрушений такого типа было воспроизведено в лабораторных условиях [43]. По поверхности образца стали 18-8, полностью погруженного в раствор Fe la и немного отклоненного от вертикали, постоянно пропускали слабую струю концентрированного раствора Fe lj. Через несколько часов под струей раствора Fe Ia образовывалась глубокая канавка (рис. 18.5, Ь). На поверхности железа подобная канавка не образуется, так как на нем не возникает активно-пассивный элемент.  [c.313]

Рис. 18.5. Бороздки при питтинге нержавеющей стали 18-8 а — после выдержки образца 76X 127 мм в течение года в морской воде гавани Бостона (питтннг начался в щели между бакелитовым прутком и внутренней поверхностью отверстия) Ь — при пропускании в течение 4 ч слабой струн 50 % раствора Fe l, по поверхности образца, погруженного в 10 % раствор Fe li Рис. 18.5. Бороздки при <a href="/info/6694">питтинге нержавеющей стали</a> 18-8 а — после выдержки <a href="/info/35339">образца</a> 76X 127 мм в течение года в <a href="/info/39699">морской воде</a> гавани Бостона (питтннг начался в щели между бакелитовым прутком и <a href="/info/1465">внутренней поверхностью</a> отверстия) Ь — при пропускании в течение 4 ч слабой струн 50 % раствора Fe l, по поверхности <a href="/info/35339">образца</a>, погруженного в 10 % раствор Fe li
Рис. 18.6. Коррозионное растрескивание под напряжением нержавеющей стали 18-8 (марка 304) в слое изоляции из силиката кальция, содержащего 0,02—0,5 % хлоридов, при 100 °С (Х250). Трещина в этой среде начинается в питтинге. Видимость извилистого хода трещины создается из-за того, что в одной плоскости оказалось множество несвязанных между собой трещин [47] Рис. 18.6. <a href="/info/1553">Коррозионное растрескивание</a> под <a href="/info/163835">напряжением нержавеющей стали</a> 18-8 (марка 304) в слое изоляции из <a href="/info/342045">силиката кальция</a>, содержащего 0,02—0,5 % хлоридов, при 100 °С (Х250). Трещина в этой среде начинается в <a href="/info/6691">питтинге</a>. <a href="/info/14380">Видимость</a> извилистого хода трещины создается из-за того, что в одной плоскости оказалось множество несвязанных между собой трещин [47]
Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтин-гообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Fe + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала пит-тингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических  [c.342]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

А. Пятнами, язвами, точками (питтинг). Эти виды различаются по соотношению диаметра разрушенного участка к его глубине (см. рис. 1, в, г, д). Язвы и пятна образуются на участках, где защитный слой недостаточен, порист или поврежден. Точечная коррозия типична для пассивирующихся металлов,— хрома, алюминия, нержавеющих сталей и др. Питтинг возникает, когда в агрессивной среде одновременно присутствуют окислитель, являющийся пассиватором, и ионы хлора, сульфат-ионы или другие ионы, играющие роль депассиваторов.  [c.4]

Измерение критической температуры питтинго-обрааования нержавеющих сталей усовершенствованным электрохимическим методом  [c.32]

Рис. 33. Средняя скорость коррозий, рассчитанная по потерям массы (а) и максимальная глубина питтинга (б) нержавеющих сталей (Л—F), фосфористой бронзы (G) и низколегированной стали (/) при 8-летней экспоз1ИЦИи в тропической морской атмосфере (Кристобаль, Зона Панамского канала) [31]. Нержавеющие стали А—410 (13 Сг) В —430 (17 Сг) С —301 (17-7) Я —316 (18-13 н Мо) F-32I (17—10 и Ti) Рис. 33. <a href="/info/2004">Средняя скорость</a> <a href="/info/1554">коррозий</a>, рассчитанная по <a href="/info/251112">потерям массы</a> (а) и максимальная глубина <a href="/info/6691">питтинга</a> (б) <a href="/info/51125">нержавеющих сталей</a> (Л—F), <a href="/info/1454">фосфористой бронзы</a> (G) и <a href="/info/58326">низколегированной стали</a> (/) при 8-летней экспоз1ИЦИи в тропической <a href="/info/48182">морской атмосфере</a> (<a href="/info/216538">Кристобаль</a>, Зона Панамского канала) [31]. Нержавеющие стали А—410 (13 Сг) В —430 (17 Сг) С —301 (17-7) Я —316 (18-13 н Мо) F-32I (17—10 и Ti)

Сталь 430, ферритный сплав, подобно мартенситным сталям, подвержена местной коррозии как на малых, так и на больших глубинах. В Кюр-Биче максимальная глубина питтинга на образцах из этой стали за 1,5 года достигла 1,5 мм [4] хотя отдельные пластинки в начальный период экспозиции могут совсем не иметь ниттингов. Более длительный по сравнению со сталью 410 индукционный период местной коррозии, иногда наблюдавшийся на стали 430, может объясняться более высоким содержанием хрома, однако полной уверенности в этом нет. Например, при глубоководных коррозионных испытаниях, результаты которых приведены в табл. 19. расположенные рядом образцы из сталей 410 и 430 корродировали примерно одинаково. Однажды начавшись, в дальнейшем коррозия может протекать с очень высокой скоростью. Как и в случае стали 410, ни высокая скорость потока воды, ни катодная защита не обеспечивают надежного предупреждения коррозии, поэтому сталь 430 и другие подобные ей ферритные нержавеющие стали не рекомендуется применять в условиях погружения.  [c.64]

Согласно данным Леннокса и др. [35], представленным на рнс. 36, скорость местной коррозии нержавеющей стали в морской воде уменьшается при наличии контакта с железным пли алюминиевым анодом. Существенное уменьшение щелевой коррозии сопровождается лишь слабым возрастанием числа отдельных случайных питтингов, не связанных с наличием щелей.  [c.66]

Богатые никелем сплавы железа ведут себя во многом аналогично чистому никелю и в отношеннп коррозионной стойкости в морских условиях ничем не выделяются. Очень высокой стойкостью в морских атмосферах отличаются сплавы никель — хром, такие как Инконель 600, содержащий 15 % Сг. В условиях погружения эти сплавы, подобно аустенитным нержавеющим сталям, склонны к местной коррозии, в частности к питтингу,  [c.75]


Смотреть страницы где упоминается термин Стали нержавеющие питтинг : [c.199]    [c.292]    [c.511]    [c.85]    [c.87]    [c.312]    [c.317]    [c.344]    [c.73]    [c.19]    [c.20]    [c.87]    [c.112]   
Коррозия и борьба с ней (1989) -- [ c.311 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Питтинг

Стали нержавеющие



© 2025 Mash-xxl.info Реклама на сайте