Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение деталей электромеханической обработкой

УПРОЧНЕНИЕ ДЕТАЛЕЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ  [c.319]

А90 Упрочнение и восстановление деталей машин электромеханической обработкой.— 3-е изд., перераб. и доп.— М. Машиностроение, 1989. — 200 с. ил.  [c.2]

Применение ЭМО. В связи с повышением эксплуатационных свойств электромеханическую обработку целесообразно применять для широкой номенклатуры деталей, работающих в различных условиях трения и изнашивания. Так, эффективным является применение ЭМО для деталей транспортного, сельскохозяйственного, дорожного, строительного машиностроения, которые в процессе эксплуатации подвергаются тяжелым нагрузкам в условиях граничного трения и абразивного изнашивания. В качестве примера можно привести упрочнение шеек рессорных подвесок локомотива шеек крупногабаритных валов шкворня поворотного кулака, шаровых опор, кулачков распределительных валов, чашек дифференциала заднего моста автомобиля, галтели валов коробки передач, цилиндров двигателей цилиндров насосов, гидравлических и пневматических механизмов торцовых поверхностей поршневых колец, дисков тормозных устройств.  [c.562]


Шероховатость поверхности, необходимая, как будет показано в дальнейшем, для деталей с высокой поверхностной твердостью, может быть достигнута обдувкой дробью, стальной крошкой, электроискровой или электромеханической обработкой, анодно-механическим шлифованием. Длк деталей же с поверхностной твердостью до НВ 300—350 шероховатость поверхности наносится накаткой, нарезанием рваной резьбы или указанными выше способами. Из всех указанных способов наиболее целесообразными являются обдувка дробью или стальной крошкой, накатка. Все эти способы не снижают усталостную прочность детали и обеспечивают примерно ту же прочность соединения покрытие—деталь, что и другие способы. Все же способы нарезки, электроискровой, анодно-механической и электромеханической обработки снижают усталостную прочность деталей, работающих при знакопеременных нагрузках. Электромеханическую обработку сглаживающей пластиной (упрочнение)  [c.261]

Таким образом, все рассмотренные способы подготовки деталей к металлизации понижают предел. выносливости. Поэтому они должны быть заменены различными видами накатки, если позволяет твердость детали, обдувкой дробью или стальной крошкой или электромеханической обработкой (упрочнением). Эти способы подготовки не только не вызывают понижения усталостной прочности деталей, но и повышают предел усталости.  [c.268]

Эти особенности электромеханической обработки расширяют область ее применения в авторемонтном производстве, особенно для упрочнения деталей, восстановленных наплавкой.  [c.295]

Электромеханический способ (рис. 73) нашел применение для восстановления размеров изношенных поверхностей, их упрочнения и размерно-чистовой обработки деталей. Сущность способа заключается в совместном тепловом действии электрического тока и пластического деформирования на восстанавливаемую деталь. В месте контакта инструмента с деталью выделяется тепло, количество которого можно подсчитать по формуле [6]  [c.229]

Электромеханический способ обработки можно применять для упрочнения, а также для восстановления неответственных деталей некоторых подвижных и неподвижных сопряжений., Для широкого распространения способа в авторемонтном производстве необходимо экспериментальное исследование достаточно большой партии восстановленных деталей в реальных условиях эксплуатации автомобилей.  [c.297]


В условиях серийного производства и ремонта деталей основной задачей совершенствования методов электромеханического упрочнения должно явиться повышение производительности процесса и обеспечение высокого качества обрабатываемых деталей за счет применения многоинструментальных приспособлений, автоматизации технологического процесса ЭМО, развитие САПР ЭМО в целях обеспечения эксплуатационных свойств деталей машин путем научно обоснованного выбора и нормирования режимов обработки.  [c.361]

Рис. 111. Изменение наружного диаметра образцов при элек-мирования резко возрастает с уве- тромеханическом упрочнении личением пористости материала и силы тока. При обработке стали ЭМО усадка диаметра детали зависит от шероховатости поверхности, материалов усадка диаметра зависит от шероховатости поверхности и от глубины проникновения пластической деформации, которая в основном зависит от пористости материала и параметров режима обработки. Здесь нужно учитывать, что при прочих одинаковых условиях ЭМО увеличение давления приводит к увеличению поверхности контакта и снижению силы тока. Практика показывает, что при одинаковых режимах обработки изменение размеров пористых деталей в 4...6 раз превосходит усадку деталей из компактных материалов. Это должно учитываться при назначении припусков на ЭМО в процессе изготовления порошковых деталей. В зависимости от режимов упрочняющей обработки ЭМО и пористости обрабатываемых деталей величина припуска должна находиться в пределах 20... 40 мкм на сторону. Так как в процессе ЭМО шероховатость исходной поверхности снижается в 2...3 раза, электромеханическая обработка может быть окончательной упрочняюще-отделоч-ной операцией. Рис. 111. Изменение <a href="/info/435985">наружного диаметра</a> образцов при элек-мирования резко возрастает с уве- тромеханическом упрочнении личением <a href="/info/184270">пористости материала</a> и <a href="/info/279416">силы тока</a>. При <a href="/info/273535">обработке стали</a> ЭМО усадка диаметра детали зависит от <a href="/info/1110">шероховатости поверхности</a>, материалов усадка диаметра зависит от <a href="/info/1110">шероховатости поверхности</a> и от глубины проникновения <a href="/info/1487">пластической деформации</a>, которая в основном зависит от <a href="/info/184270">пористости материала</a> и параметров режима обработки. Здесь нужно учитывать, что при прочих одинаковых условиях ЭМО увеличение давления приводит к увеличению <a href="/info/5495">поверхности контакта</a> и снижению <a href="/info/279416">силы тока</a>. Практика показывает, что при одинаковых режимах обработки <a href="/info/169075">изменение размеров</a> пористых деталей в 4...6 раз превосходит <a href="/info/227548">усадку деталей</a> из компактных материалов. Это должно учитываться при <a href="/info/152923">назначении припусков</a> на ЭМО в процессе изготовления <a href="/info/138487">порошковых деталей</a>. В зависимости от режимов упрочняющей обработки ЭМО и пористости обрабатываемых деталей величина припуска должна находиться в пределах 20... 40 мкм на сторону. Так как в процессе ЭМО шероховатость исходной поверхности снижается в 2...3 раза, <a href="/info/305682">электромеханическая обработка</a> может быть окончательной упрочняюще-отделоч-ной операцией.
Методы электромеханической обработки находят также применение для упрочнения винтовых поверхностей - ходовые винты станков, глобоидные червяки рулевого управления автомобиля, цилиндрические и конические резьбовые соединения (с метрической и трубной резьбой) зубьев зубчатых колес - цилиндрических, конических, червячных инструмента - сверл, фрез, разверток, зенкеров, пуансонов, матриц, долбяков, червячных фрез, зубо-строгапьных резцов - по передним и задним режущим поверхностям поверхностей деталей, образованных металлизацией, напылением, нанесением покрытий, наплавкой. Упрочнение плоских поверхностей ЭМО на фрезерных станках имеет существенное значение для таких деталей, как направляющие станин, ножи режущих аппаратов сельскохозяйственных машин, лапы культиваторов, штанги различных типов инструментов, ножи измельчителей кормов.  [c.562]

Электроискровая обработка металла как самостоятельный способ восстановления размеров деталей не нашла применения, но может использоваться для упрочнения режущего инструмента и выполнения ряда вспомогательных работ, например, для удаления заломанного инструмента. Электромеханическая обработка получает достаточно широкое распространение для упрочнения деталей, восстанавливаемых наплавкой, и для подготовки деталей к металлизации.  [c.190]

Применительно к практике ремонта машин большая работа по упрочнению деталей проведена И. И. Луневским, В. М. Кряжковым и его сотрудниками по отраслевой лаборатории, Н. И. Доценко, Б. М. Аскинази и другими исследователями. Однако применение современных методов упрочняющей технологии не нашло еще должного применения в авторемонтном производстве. Между тем упрочнение позволило бы не только повысить усталостную прочность и износостойкость деталей, но и во многих случаях для восстановления деталей наплавкой применять малоуглеродистую проволоку вместо высокоуглеродистой, более дорогой и нередко дефицитной. Повышения эксплуатационных свойств деталей, восстанавливаемых наплавкой и механической обработкой, можно достичь несколькими методами химико-термической обработкой, поверхностной закалкой, поверхностным пластическим деформированием, электромеханической обработкой.  [c.312]


Оптимальные режимы электромеханического упрочнения позволяют добиться не только требуемых параметров шероховатости, но и возможности получить закаленную структуру поверхностного слоя с повышенной износостойкостью, что обуславливается его высокой твердостью, прочностью и мелкозернистой структурой. Сжимаюшие остаточные напряжения в поверхностном слое от сил деформирования оказывают благоприятное влияние на различные виды разрушающих нагрузок в совокупности с повышенной пластичностью после ЭМО, что является одной из причин повышения контактной прочности поверхностного слоя. Кроме того, износостойкость повышается за счет образования после ЭМО большей несущей способности профиля, чем после механической и термической обработки, что уменьшает время приработки, а отсутствие прижогов и трещин наряду со снижением числа микронеровностей снижает число микроконцентраторов напряжения, что наряду с упрочнением поверхностных слоев повышает выносливость деталей на удар. Повышение износостойкости деталей машин, работающих в условиях трения скольжения, возможно также за счет электромеханической обработки при протекании электрического тока по импульсной схеме, благодаря чему на упрочняемой поверхности формируется специфическая текстура, представляющая собой чередование упрочненных и неупрочненных участков.  [c.360]

Для получения требуемого состояния поверхностного слоя материала используют различные технологические процессы. Так, плотный и износостойкий поверхностный слой материала достигается при термической обрабоке. Для упрочнения рабочих поверхностей деталей и придания им повышенной стойкости против воздействия внешних сред их подвергают химико-термической обработке. Применяют также и механические способы упрочнения поверхностного слоя материала уплотнительных поверхностей алмазное выглаживание, поверхностно-пластическую деформацию, дробеструйную обработку, электромеханическую обработку. Перечисленные методы обработки относятся к отделочным операциям, но качество поверхности после отде-лочно-упрощающих операций в значительной мере зависит от качества поверхности, полученной на предшествующих стадиях обработки.  [c.119]


Смотреть страницы где упоминается термин Упрочнение деталей электромеханической обработкой : [c.561]    [c.556]    [c.933]    [c.304]    [c.194]    [c.582]    [c.169]   
Смотреть главы в:

Основы технологии автостроения и ремонт автомобилей  -> Упрочнение деталей электромеханической обработкой



ПОИСК



Обработка электромеханическая

Упрочнение

Упрочнение деталей

Упрочнение электромеханической обработкой



© 2025 Mash-xxl.info Реклама на сайте