Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура цветных металлов и сплавов

Для выполнения работ (задачи № 270—283) следует предварительно изучить типичные структуры цветных металлов и сплавов.  [c.321]

СТРУКТУРА ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ  [c.321]

Существуют также специально разработанные сортаменты для выпуска проката из цветных металлов и сплавов — меди, алюминия, латуни, дюраля в виде листов, ленты, труб, прутков и других изделий. Важнейшей особенностью деформации металла при прокатке является получение волокнистой структуры металла с ори-  [c.62]


Структура и свойства литого металла во многом определяются режимом кристаллизации, который можно регулировать в относительно широких пределах. Основными методами воздействия на процесс кристаллизации металлов и сплавов с целью улучшения качества литых заготовок являются регулирование скорости охлаждения и модифицирование. В последние годы все более широкое применение получают процессы производства слитков и отливок из черных и цветных металлов и сплавов, сочетающие операции литья и давления, литья и вибрации и т. п.  [c.4]

ВЛИЯНИЕ ДАВЛЕНИЯ НА СТРУКТУРУ И СВОЙСТВА ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ НА ИХ ОСНОВЕ  [c.119]

Кратко изложены теоретические и технологические основы производства черных и цветных металлов и сплавов, их обработки. Описаны свойства различных металлов и сплавов. Освещены основные положения физического металловедения, современные методы изучения структуры и свойств металлов и сплавов. Рассмотрены металлические материалы, используемые в технике, полупродукты и заготовки, полупроводниковые материалы.  [c.4]

В Справочнике кратко изложены теоретические основы металловедения, приведены методы исследования и испытаний металлов к оценки их важнейших технологических свойств. Разделы представляют необходимые сведения о сплавах на основе железа-сталях и чугунах сведения но составу, структуре и свойствам основных цветных металлов и сплавов на их основе сведения о сталях и сплавах со специальными свойствами сведения о благородных металлах и сплавах.  [c.2]

При сочетании донорных и акцепторных ингибиторов возникают наиболее благоприятные условия для образования прочных хемосорбционных пленок как на отрицательно заряженных металлах или участках металлов (катодах, энергетических тиках), так и на положительно заряженных металлах или участках металлов (анодах, энергетических ямах) с последующей защитой хемосорбционных пленок более толстыми слоями ингибиторов коррозии адсорбционного типа (структура сэндвича ). Хемосорбционно-адсорбционные пленки часто имеют упорядоченную, доменную структуру и по своим электрическим и диэлектрическим свойствам приближаются к полупроводникам. Важно, что в двигателях и механизмах анодными участками по отношению к стали, как правило, становятся детали из цветных металлов и сплавов — меди, бронзы, магниевых, алюминиевых сплавов и др. В случае макрообъектов на таких металлах можно ожидать преимущественной сорбции ингибиторов донорного действия, которые защищают цветные металлы от коррозии, а не усиливают ее как акцепторные ингибиторы 120, 104].  [c.75]


Ковка цветных металлов и сплавов имеет свои особенности, существенно влияющие на технологические процессы. В ряде случаев ковка цветных металлов и сплавов применяется как предварительная обработка исходного слитка с целью повышения равномерности структуры металла, уменьшения размера зерна при последующей штамповке.  [c.516]

Если для данного материала существует амплитуда напряжений, при которых опасное повреждение или разрушение от усталости не может произойти даже при сколь угодно большом числе циклов, используют понятие предела выносливости. Существование предела выносливости означает, что материал обладает свойством приспособляемости к повторным пластическим деформациям на уровне структуры материала. Гипотеза о существовании предела выносливости, по-видимому, соответствует преимущественно лишь тем опытным данным, которые относятся к углеродистым сталям при нормальной температуре и других нормальных условиях окружающей среды. Для многих легированных сталей, цветных металлов и сплавов на их основе предел выносливости является условной характеристикой усталостные повреждения могут возникать и при меньших напряжениях, если только число циклов нагружения достаточно велико. В этих случаях предел выносливости имеет смысл повреждающего или разрушающего напряжения, соответствующего заданному числу циклов.  [c.96]

Двукратным травлением можно выявить границу между эвтектическим и вторичным цементитом в белых чугунах [28]. Реактив хорошо выявляет общую структуру многих цветных металлов и сплавов, в частности олова, висмута, свинца и сплавов типа олово — свинец, олово — цинк, олово — кадмий, баббитов и др. При этом, основа с большим количеством олова темнеет, интерметаллиды остаются светлыми. 2—5%-ный раствор применяют также для обнаружения соединений мышьяка, висмута, вольфрама, магния, церия, лантана и других металлов. В большинстве случаев выявляет и макроструктуру, а также структуру литых и термически обработанных сплавов алии, алнико, анко [154]. При этом шлиф лучше промывать метиловым спиртом и ацетоном.  [c.6]

Исходным материалом для прокатки цветных металлов и сплавов обычно являются слитки. В некоторых случаях, при малой пластичности металла в литом состоянии, слитки предварительно подвергают ковке или прессованию. Это обеспечивает разрушение малопластичной литой структуры в условиях резко выраженной схемы объемного сжатия.  [c.359]

Минимальная толщина испытуемого образца должна превышать диагональ отпечатка в 1,2 (для сталей) или в 1,5 раза (для цветных металлов и сплавов). Расстояние между центром отпечатка и краем образца или краем соседнего отпечатка принимают не менее 2,6 d. Обычно d< мм, т. е. размеры отпечатка при определении твердости по Виккерсу, как правило, значительно меньше, чем в методе Бринелля. При грубой структуре образца это может вызвать больший разброс значений HV в разных точках образца по сравнению с разбросом НВ. Для получения достоверных средних значений HV приходится делать на каждом образце не менее 5—10 замеров.  [c.231]

Явление рекристаллизации лежит в основе операции термической обработки, называемой рекристаллизационным о т и г о м, проводимым для снятия наклепа и повышения пла-,стичности при холодной обработке металлов давлением, а также Для получения необходимых структуры и свойств полуфабрикатов И изделий, особенно из цветных металлов и сплавов.  [c.107]

Детали из цветных металлов и сплавов изготовляют различными методами путем холодной и горячей обработки давлением, отливки, сварки и обработки резанием. Изменения структуры и свойств цветных металлов и сплавов достигают термической обработкой, пластическим деформированием и легированием. Основными операциями термической обработки цветных металлов и сплавов являются отжиг (диффузионный, рекристаллизационный и для снятия внутренних остаточных напряжений) и закалка в сочетании со старением (упрочняющим отпуском).  [c.192]


Книга является учебником для учащихся техникумов по курсу Металловедение . В книге изложены вопросы, касающиеся строения и кристаллизации металлов, структуры сплавов, методов исследования структуры и свойств металлов и сплавов, влияния технологического процесса производства на структуру и свойства металлов и сплавов, основ термической обработки, классификации специальных сталей и цветных металлов и сплавов.  [c.2]

Обработке давлением подвергают металлы и сплавы, обладающие пластичностью, например, углеродистые и легированные стали, цветные металлы и сплавы. В результате обработки давлением изменяются форма, размеры, структура и механические свойства металла.  [c.215]

Притиры. Материал притира должен быть мягче, чем материал обрабатываемой детали. Притиры изготовляют из мягкого мелкозернистого чугуна перлитной структуры твердостью НВ 140— 200, чугуна с ферритной структурой твердостью НВ 140, стали, цветных металлов и сплавов, пластических масс, зеркального стекла и стекла пирекс.  [c.514]

ОСОБЕННОСТИ ИЗМЕНЕНИЯ СТРУКТУРЫ И СВОЙСТВ МЕТАЛЛА В ЗОНЕ ТЕРМИЧЕСКОГО ВЛИЯНИЯ ПРИ СВАРКЕ РАЗЛИЧНЫХ ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ  [c.357]

Цветные металлы и сплавы, применяющиеся для различных сварных конструкций, обладают разнообразными свойствами. Поэтому структура и свойства металла швов и зон термического влияния их сварных соединений также весьма разнообразны.  [c.357]

Непрерывное литье тяжелых цветные металлов и сплавов получило широ-ное распространение не только при производстве заготовок машиностроительного назначения, но и в практике изготовления слитков (заготовок) для последующей обработки давлением с целью выпуска деформированных полуфабрикатов разнообразного сортамента и назначения. Необходимость осуществления горячей или холодной пластической деформации литых заготовок с достаточно высокими обжатиями, а также получения при этом качественных деформированных полуфабрикатов с высокими плотностью, дисперсностью структуры и химической однородностью предопределяет повышенные требования к качеству литых заготовок.  [c.636]

В учебном пособии рассмотрены основные разделы курса материаловедения атомно-кристаллическое строение металлов, основы кристаллизации, диаграммы состояния сплавов, а также основные конструкционные. металлы и сплавы на основе железа и цветных металлов. Показана возможность изменения структуры и свойств материалов за счет термической и химикотермической обработки. Большое внимание уделено неметаллическим материала.м, которые находят применение в промышленности. Приведены варианты заданий для выполнения контрольной работы.  [c.2]

Немагнитные стали и сплавы — относятся к группе пара- и диамагнитных материалов с магнитной проницаемостью не более 1,5 гсЫ. Подобными свойствами обладают пластмассы, цветные металлы и др. Немагнитность стали определяется наличием в ее составе значительного содержания никеля и (или) марганца и аустенитной структурой. Немагнитные стали дешевле, прочнее и имеют меньшие потери при перемагничивании, чем цветные металлы, и поэтому находят широкое применение.  [c.38]

В последней четверти прошлого столетия на базе фундаментальных открытий в области естествознания научные разработки охватили все области производства черных и цветных металлов. В качестве самостоятельной науки оформилась металлография — учение о структуре металлов и сплавов, основы которого были заложены русским металлургом П. П. Аносовым еще в первой половине XIX в.  [c.134]

В качестве легирующей добавки к чугуну и стали (в частности, коррозионностойкой), улучшающей их структуру, свойства и обрабатываемость к цветным металлам и сплавам, таким как РЬ, 5п, Си и их сплавы, улучшающей их свойства. Например, свинец, легированный 0,05 — 0,1 % Те, обладает повышенными механическими и антикоррозионными свойствами, применяется в кабельной промышленности. Добавки теллура к меди и ее сплавам улучшают их обрабатываемость и теплостойкость. Малые добавки (0,1 —1,0% Те) к оловянистым сплавам, в частности антифрикционным, повышают их твердость, прочность и р аботоспособность  [c.347]

В книге рассмотрены строение и кристаллизация металлов и их сплавов, современные методы исследования структуры и свойств металлов, влияние технологических процессов и условий эксплуатации на структуру и свойства металлов и сплавов, основы термической обработки, специальные стали и цветные металлы и сплавы. Большое внимание уделено вопросам длительной прочности и эксплуатационной надежности материалов энергетическопо оборудования и сварным соединениям.  [c.2]

Третий раздел содержит сведения по составу, структуре и свойствам основных цветных металлов и сплавов на их основе. Приведены марки сплавов на основе алюминия, магния, титана, цинка, меди, никеля и указаны основные области их применения. С учетом экономической целесообразности широкого применения порошковых материалов даны характеристики материалов для подшипников скольжения, конструкционных, антифрикционных, фрикционных материалов, а также пористых фильтров тонкой 0ЧИСТЮ1 жидкостей и газов.  [c.3]

Для сталей и чугунов в условиях трения скольжения лучшим материалом сопряженной детали служат те цветные металлы и сплавы, которые имеют в структуре мягкую или легкоплавкую составляющую, способную проявлять защитную реакпию и предупреждать повреждение сопряженной поверхности. При усилении трения такая структурная составляющая допускает на отдельных участках контакта легкое пластическое течение либо размягчение, в результате чего снижаются местные давления и температура и тем самым исключается схватывание.  [c.332]


При устаиовлеини режима обработки необходимо учитывать значение допустимой степени деформации сплава, которая определяется пластическими свойствами. Допустимые степени деформации цветных металлов и сплавов меньше для литого и крупнозернистого металла, а также для металла, находящегося в многофазном состоянии и имеющего гексагональную кристаллическую решетку по сравненшо с металлом, предварительно деформированным с мелкозернистой структурой, находящимся в однофазном состоянии и имеющим кубическую гране-центрированную кристаллическую решетку.  [c.517]

Коррозионная стойкость цветных металлов и сплавов на их основе зависит от положения металла в периодической системе, электродного потедциала и способности к пассивации механические свойства зависят от состава сплава, структуры и вида обработки.  [c.110]

Величина циклической вязкости не зависит от предела усталости, так же как от ударной вязкости металла. Некоторые металлы, например медь, отожженная углеродистая сталь, при относительно небольшом пределе усталости обладают большой циклической вязкостью и способны поглош ать значительное количество энергии циклического нагружения, не разрушаясь. Другие металлы да ке при относительно высоких значениях обладают весьма низкими значениями циклической вязкости (например, шарикоиодшипнпковая сталь). Высокопрочные легированные стали имеют чаще всего незначительную циклическую вязкость. Большинство цветных металлов и сплавов, например алюминий и его сплавы, большинство латуней и бронз, также имеют незначительную циклическую вязкость. Наибольшей циклической вязкостью II способностью гасить колебания обладают материалы с резко неоднородной структурой, в частности серые чугуны, пластмассы и магниевые сплавы. Серые чугуны, но данным ]ЦНШ1ТМАШ [56, 79], обладают примерно в 6 раз большей способностью гасить колебания, чем отож/кепная углеродистая сталь (фиг. 93). У высокопрочных магниевых чугунов эта способность значительно снижена. Модифицированные чугуны занимают промежуточное место между обыкновенными серыми и высокопрочными чугунами.  [c.150]

Изложена теория термической обработки сталей, чугунов, цветных металлов и сплавов. Проанализированы изменения структуры и свойств при закалке, отпуске, старении, отжиге с фазовой перекристаллизацией, рекристаллизационном и дорекристаллизационном отжиге, гомогенизации, отжиге для уменьшения напряжений, химико-термической, термомеханической и других разновидностях термообработки.  [c.2]

В книге изложены теоретические основы металловедения, а также специальные вопросы металловедения и термической обработки черных и цветных металлов и сплавов. Учебное пособие позволит учащимся составить представление о процессах и закономерностях, определяющих формирование структуры и различных свойств металлов и сплавов, о технологических приемах, используемых на практике для придания металлам определенных свойств, о составе, свойствах и применении углеродистых и легированных сталей, а также различных сплавов на основе цветных металлов, используемых в современной технике. Ил. 72. Табл. 8. Библиогр. список 28 назв.  [c.2]

В книге рассмотрены основные вопросы металловедения и термической обработки железоуглеродистых и некоторых наиболее распространенных цветных сплавов. Описаны новые методы изменения структуры и свойств металлов и сплавов (термомеханическая, термомагнитная, термоультразвуковая и другие виды обработки). Приведены структура, свойства и указано применение черных и цветных металлов и сплавов. Кратко описаны основные методы исследования структуры и физико-механических свойств металлов, применяемые в металловедении.  [c.3]

Применяют также электроды из цветных металлов и сплавов, обеспечивающие получение пластичного металла шва. Для этой цели могут быть использованы сплавы на основе меди и никеля (электроды МНЧ-1), которые не образуют соединений с углеродом и не растворяют углерод, уменьшают отбеливание, способствуют графитизации. Применяют также железомедные, железоникелевые и медно-никелевые электроды. Такие электроды делают составными — стержень из цветного металла, а железо входит в состав электрода в виде оплетки, дополнительного стержня или порошка в покрытии. Содержание железа в металле шва обычно не должно превышать 10... 15 %. Сварку ведут с минимальным теп-ловложением для того, чтобы уменьшить зону нагрева, в которой возможно образование закалочных структур и высоких остаточных напряжений. Применяют электроды малых диаметров 3... 4 мм, малую силу тока /св = (20...30) /, сварку осуществляют короткими участками (15... 25 мм), проводят после сварки проковку шва. Предпринимают также другие специальные меры, например сварку со стальными шпильками для получения прочного механосварного соединения. Б кромки детали предварительно ввертывают шпильки, которые затем заваривают.  [c.314]

Наиболее склонными к растрескиванию являются стали мартен-ситной структуры. Этим объясняется, что хромистые стали Х13 менее стойки к коррозионному растрескиванию, чем ферритные высокохромистые стали Х27. Стали типа 1Х18Н9, нестабилизированные, а также стабилизированные титаном и ниобием, склонны к растрескиванию в большом количестве сред, в особенности в растворах, содержащих хлориды. Из цветных металлов и сплавов склонностью к коррозионному растрескиванию обладают алюминиевомагниевые сплавы, латунь, свинец и др. Бронзы менее склонны к растрескиванию, чем латуни. Никель и его сплавы еще меньше подвержены этому виду разрушения, чем перечисленные выше материалы.  [c.106]

Гистсрсзис увеличинярт ппгреттюсть в показаниях прибора при прямом и обратном ходе. Цветные металлы и сплавы имеют малый гистерезис. У стали, в зависимости от ее химического состава и структуры, гистерезис может изменяться в очень широких пределах. Особенно сильно на величину гистерезиса влияет концентрация напряжений в микрообъемах ЧЭ. Для уменьшения их и гисте-  [c.87]

В специальных главах рассмотрены способы металлографического исследования сталей, чугунов, цветных металлов и их сплавов. К каждой главе дана небольшая вводная часть, где указаны характерные свойства данного материала и особенности выявления структуры. PeiaKTHBbi, как правило, подразделены на травители для выявления макро- и микроструктуры, среди которых выделяют реагенты для выявления общей структуры, границ и поверхностей зерен, отдельных фаз, неметаллических и окисных включений, дислокаций, фигур травления, фигур деформации и т. д.  [c.7]

Кривошипно-шатунные [механизмы <В 62 М (велосипедов, мотоциклов и т. п. 15/00 в колесных транспортных средствах, конструкщ1И 3/00-3/16) на локомотивах В 61 С 9/04, 9/40 в ползунных прессах В 30 В 1/26-1/28 в приводах стеклоочистителей В 60 S 1/24 в устройствах для прессования формовочных смесей В 22 С 15/06) передачи F 16 Н 21/18-21/38] Кривошипы F 16 С 3/00, 3/04, 3/22-3/30 Кривые, чертежные приборы для вычерчивания кривых В 43 L 11/02-11/08, 13/20-13/22 Криогенные насосы F 04 В 37/08 Кристаллизация <В 01 D (9/00-9/04 С 30 В при возгонке 7 02)-, использование (для изменения физической структуры цветных металлов или их сплавов С 22 F 3/02 для исследования или анализа материалов G 01 N25/14)) Кристаллы <8 01 (модификация кристаллической структуры веществ с помощью ударных волн J 3/08 очистка D 9/00) обработка и резание  [c.101]



Смотреть страницы где упоминается термин Структура цветных металлов и сплавов : [c.559]    [c.411]    [c.49]    [c.119]    [c.109]    [c.110]   
Смотреть главы в:

Материаловедение  -> Структура цветных металлов и сплавов



ПОИСК



Металлы и сплавы Металлы

Металлы цветные

Сплавы металлов

Структура металлов и сплавов

Цветные сплавы —



© 2025 Mash-xxl.info Реклама на сайте