Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействия фотонов с фотонами и электронами

Величины Qa, 0э имеют размерность площади (м ). Чтобы получить наглядное истолкование этих величин, окружим центр атома площадкой, равной или центр электрона — площадкой о вероятность взаимодействия v-фотона с атомом или электроном будет такова, что как будто это взаимодействие происходит лишь в тех случаях, когда 7-фотон проходит через эти площадки. Поэтому коэффициенты а , называются эффективными поперечными сечениями для того или иного процесса и выражают вероятность осуществления этого процесса.  [c.31]


Во многих случаях можно рассматривать взаимодействие фотонов с атомами и молекулами вещества, как если бы последние были свободны или по крайней мере изолированы. Однако в тех случаях, когда квантово-оптические явления происходят в твердых телах, необходимо принимать во внимание электронные и другие коллективные движения в кристалле. Этим коллективным движениям сопоставляют своеобразные кванты , называемые квазичастицами или элементарными возбуждениями. Кристалл уподобляют газу таких квазичастиц. Квантово-оптические явления в твердых телах рассматривают, исходя из взаимодействия фотонов с указанными квазичастицами.  [c.129]

Кроме указанных сил, в некоторых случаях следует учитывать силы торможения дислокаций динамического происхождения, обусловленные взаимодействием дислокаций с фотонами, электронами проводимости и т. д. [44].  [c.79]

ВЗАИМОДЕЙСТВИЯ ФОТОНОВ С ФОТОНАМИ И ЭЛЕКТРОНАМИ  [c.138]

Образование п-мезонов происходит, когда энергия первичной частицы больше порогового значения (- 300 Мэе). Число я-мезонов, образованных на одно неупругое взаимодействие, сильно зависит от начальной энергии и возрастает с увеличением энергии. При энергиях, больших 30 Гэв, выход я-мезонов составляет около 80% общей множественности (табл. 15.11). В результате неупругого взаимодействия образуются я+-, я -и я°-мезоны. Время жизни нейтрального я°-мезона очень мало (т=2,1-10 сек). Практически он сразу же распадается на два у-кванта. Поэтому при расчете защиты я°-мезоны не рассматриваются, однако распадные у-кванты инициируют электронно-фотонный каскад в защитных средах, и в некоторых случаях необходимо учитывать дозу фотонного излучения. я -Мезоны теряют свою энергию на ионизацию атомов среды кроме того, они могут испытывать неупругие взаимодействия с ядрами среды и, в  [c.247]

Ограничимся приведенными примерами использования законов сохранения для описания элементарных актов взаимодействия фотонов с электронами. В руководствах по атомной физике подробно исследуются весьма тонкие эффекты, которые были открыты в результате такого подхода к различным явлениям эффект Мессбауэра и др.). Там же обсуждены интересные экспериментальные исследования этих процессов, доказывающие, что законы сохранения справедливы не в среднем, а для каждого элементарного акта. Укажем также, что квантовые представления оказались чрезвычайно полезными при энергетическом анализе процессов взаимодействия света с веществом. Так, например, фотонная теория позволила разобраться в ме-  [c.450]

Фотоэффект. Гамма-фотон или фотон другого вида излучения при прохождении через вещество может вступить во взаимодействие с атомом этого вещества как целым. При этом фотон может передать всю свою энергию и полностью поглотиться, а за пределы атома выбрасывается электрон. Такой процесс вырывания электрона из атома фотоном называется фотоэффектом, а вырываемые электроны— фотоэлектронами. Атом, потерявший электрон, оказывается в возбужденном состоянии, освободившийся уровень энергии в атоме заполняется одним из наружных электронов и при этом испускается квант характеристического (рентгеновского) излучения. В отдельных случаях энергия возбуждения непосредственно передается одному из электронов атома, который покидает атом, а характеристического излучения не происходит. Это явление называется явлением Оже, а выброшенные электроны — электронами Оже.  [c.31]


Согласно Фейнману, процесс электромагнитного взаимодействия между двумя зарядами ei и еа (например, рассеяние электрона на электроне) можно схематически изобразить на плоскости координата (л )—время ( ) в виде рис. 1. Здесь внешними изломанными линиями изображаются мировые линии взаимодействующих заряженных частиц до и после взаимодействия. В соответствии с законами сохранения лептонного и электрического зарядов внешние линии нигде не обрываются. Они выходят из —оо и уходят в Ч-оо. Наклоном линии относительно оси t можно характеризовать величину импульса электрона . Внутренней волнистой линией изображается виртуальный фотон. Сам процесс взаимодействия изображается  [c.14]

В группу В входят явления, получившие название фотоэлектрических. В них энергия фотонов поглощается твердым телом и при этом генерируются свободные электроны, дырки или пары электрон — дырка, наблюдается фотоэлектронная эмиссия, возникают различные поверхностные и объемные явления с участием заряженных частиц и т. п. Различные виды взаимодействия света с твердым телом схематически изображены на рис. 9.1.  [c.304]

Ясно, что при взаимодействии света с электронами твердого тела должны выполняться законы сохранения энергии и импульса. Требование выполнения этих законов приводит к тому, что почти во всех механизмах поглощения света, связанных с различными электронными (или дырочными) переходами, принимают участие фононы. Это происходит потому, что значительное изменение импульса электронов в некоторых переходах не может быть обусловлено малыми импульсами фотонов, поглощенных при этих переходах. Это изменение импульса достигается за счет участия в процессе поглощения фононов, которые могут иметь достаточно большой импульс.  [c.307]

Эти соотношения показывают, что электроны с определенным волновым вектором в процессе взаимодействия с фотонами переходят в состояния, расположенные в более высокой зоне, и при этом волновой вектор (или квазиимпульс) сохраняется. Такие переходы получили название прямых или вертикальных. Для полупроводника, имеющего энергетические зоны, подобные изображенным на рис. 9.2,а, поглощение должно быть сильным при hv>Eg и достаточно резко спадать при hv<.Eg.  [c.308]

Фотоэффект как один из процессов взаимодействия фотона с электроном. В основе фотоэффекта (как внешнего, так и внутреннего) лежит элементарный акт поглощения фотона электроном, в результате чего энергия электрона увеличивается. Правда, этот акт не исчерпывает процесса фотоэффекта. Рассматриваемый процесс включает в себя также поведение электрона после того, как произошло поглощение фотона. Существенно, что поглотить фотон электрон может лишь при условии, что первоначально он находится в связанном состоянии (в атоме, молекуле, твердом теле). Поглощение фотона свободным электроном запрещено законами сохранения энергии и импульса.  [c.156]

Прежде всего надо найти вероятность того, что фотон данной энергии проникнет на определенное расстояние в глубь тела и поглотится там электроном, который совершит при этом переход из некоторого начального энергетического состояния в некоторое конечное состояние. Короче говоря, надо найти вероятность зарождения фотоэлектрона на определенном расстоянии от поверхности и в определенном энергетическом состоянии. Конечно, следует рассматривать только те состояния родившегося фотоэлектрона, энергия которых находится над уровнем вакуума при данной энергии фотона это накладывает ограничения на выбор начальных состояний электрона, вступающего во взаимодействие с фотоном (в этой связи напомним дважды заштрихованную полосу состояний на рис. 7.4, б).  [c.168]

К разряду элементарных частиц следовало бы относить наиболее простые, неделимые частицы материи. Исследования строения атомов и атомных ядер показали, что эти микрообъекты являются составными. Электроны, находящиеся на периферии атома, протоны и нейтроны, образующие атомные ядра, стали называть элементарными частицами, подчеркивая тем самым, что они более простые частицы, чем атомы и ядра атомов. К элементарным частицам причислили фотоны — кванты электромагнитного поля, а также нейтрино, появляющиеся в процессах Р-распада ядер. Дальнейшие исследования показали, что в процессах взаимодействия элементарных частиц образуются и другие типы частиц, большинство из которых взаимодействуют с протонами и нейтронами и между собой с такой же интенсивностью, как протоны и нейтроны в ядрах атомов. Эту большую группу частиц также назвали элементарными. Однако оказалось, что большинство частиц, отнесенных к разряду элементарных, нестабильны и могут в результате распада превращаться в другие элементарные частицы. При этом нельзя считать, что продукты распада более элементарны, чем сами распадающиеся частицы, поскольку, как правило, наблюдается несколько различных каналов распада одной и той же частицы. Поэтому нельзя заключить, что нестабильные частицы состоят из частиц — продуктов распада. Обнаружены были также частицы, напоминающие по своим свойствам электроны, но являющиеся нестабильными и существенно более массивными, чем электрон. Установлено существование трех разновидностей нейтрино.  [c.970]


Почти все элементарные частицы нестабильны. Частиц, стабильных в свободном состоянии, существует всего девять протон, электрон, фотон, а также антипротон, позитрон и четыре сорта нейтрино. Многие частицы имеют времена жизни, колоссальные по сравнению с характерным временем пролета 10" с. Так, нейтрон живет 11,7 мин, мюон — 10" с, заряженный пион— 10" с, гипероны и каоны — 10 с. Как мы увидим ниже, все эти частицы распадаются только за счет слабых взаимодействий, т. е. были бы стабильными, если бы слабых взаимодействий не существовало. Еще меньшее время (порядка 10" с) существуют нейтральный пион и эта-мезон. Распад этих частиц обусловлен электромагнитными взаимодействиями. Наконец, существует большое количество частиц, времена жизни которых столь близки к времени пролета, что многие из них частицами можно считать с большой натяжкой. Эти частицы называются резонансами, так как они регистрируются не непосредственно, а по резонансам на кривых зависимости различных сечений от энергии, примерно так же, как, например, уровни ядер идентифицируются по резонансам в сечениях ядерных реакций. Многие резонансные состояния часто трактуются как возбужденные состояния нуклонов и некоторых других частиц.  [c.281]

Для изучения определенного типа взаимодействия надо выбирать такие частицы, которые активно участвуют в этом взаимодействии, но не подвержены взаимодействиям более сильным. Поэтому электромагнитное взаимодействие удобнее всего изучать на фотонах, электронах, позитронах и мюонах, которые практически нечувствительны к сильным взаимодействиям. Теория электромагнитного взаимодействия этих частиц называется квантовой электродинамикой. Квантовая электродинамика является наиболее далеко продвинутой и в некотором (увы, не в полном ) смысле законченной теорией. В ее рамках можно количественно практически с любой точностью рассчитать любой процесс с фотонами, электронами, позитронами и мюонами. Ни для какого другого взаимодействия это пока невозможно. Образно говоря, квантовая электродинамика дает полное и точное описание всех процессов во Вселенной, состоящей из фотонов, электронов, позитронов и стабильных мюонов.  [c.331]

Расчетные методы квантовой электродинамики успешно применяются и для расчета практически важных процессов взаимодействия Y-квантов с атомами и ядрами. В этих расчетах ядро трактуется просто как точечный, или размазанный по объему ядра, но жестко связанный, заряд Ze. Здесь, конечно, надо иметь в виду, что, кроме таких чисто электромагнитных взаимодействий, могут идти еще фотоядерные реакции (см. гл. IV, И), а также процессы, связанные с поляризуемостью ядер. Однако интерференция между этими разнородными процессами практически отсутствует. Поэтому все их можно рассчитывать независимо. В чисто электромагнитном взаимодействии у-квантов с атомами и ядрами практически важнейшими процессами являются фотоэффект и рождение пар. Фотоэффект состоит в том, что у-квант поглощается атомом, из которого вылетает электрон. Свободный электрон поглотить фотон не может, так как при этом нельзя одновременно соблюсти законы сохранения энергии и импульса. Очевидно поэтому, что фотоэффект в основном будет идти при энергиях, сравнимых с энергией связи электрона в атоме, и что основную роль (порядка 80% при has > /, где I — ионизационный потенциал) будет играть фотоэффект с самой глубокой /С-оболочки атома. И действительно, сечение фотоэффекта резко падает при увеличении энергии у-кванта. Закон сохранения импульса при фотоэффекте практически не действует, потому что ядру фотон может отдать большой импульс, практически не передавая ему энергии (из-за большой массы ядра). Закон сохранения энергии выражается соотношением Эйнштейна  [c.339]

Посмотрим теперь, в каких ситуациях можно ожидать распады, обусловленные слабыми взаимодействиями. Прежде всего тут действует правило для того чтобы частица (или ядро) заметным образом распадалась за счет слабых взаимодействий, обычно необходимо, чтобы ее распад под влиянием сильных или электромагнитных взаимодействий был запрещен. Например, у нейтрального пиона равны нулю все заряды и странность. Поэтому он может распадаться за счет электромагнитных взаимодействий либо на два фотона, либо на электрон-позитронную пару. Он и распадается в основном на 2 фотона с временем жизни 2 10 с. Быть может, у нейтрального пиона и существуют какие-либо слабые распады, но они происходят столь медленно и тем самым редко, что их практически не удается наблюдать. Единственным исключением из только что приведенного правила являются Р-распадные процессы для очень тяжелых ядер. Все эти ядра нестабильны относительно процессов а-распада и спонтанного деления, обусловленных конкуренцией сильных и электромагнитных взаимодействий (см. гл. VI). Но из-за кулоновского барьера эти процессы настолько подавлены,  [c.398]

Основными формами дискретной материи являются вещественные и полевые частицы. К первым пока можно отнести молекулу, атом, протон, нейтрон, электрон из частиц образуются макросистемы — тела каждой из этих частиц соответствует античастица, время жизни которой в среде частиц ничтожно, поскольку происходит аннигиляция — взаимодействие античастицы с частицей с образованием новых вещественных или (и) полевых частиц. Ко вторым относятся фотон, нейтрино, гравитон, мезОн (вещественная частица, являющаяся квантом ядерного поля). Другие частицы — элементарные , виртуальные — настолько неустойчивы (правда, время жизни я-мезонов тоже составляет 10 с), что пока энергетического значения не имеют.  [c.35]

Фотоны с энергией ниже 5 эВ не могут взаимодействовать с веществом таким образом, как это описано выше. Значение энергии этих фотонов, как правило, не превышает энергии связи электронов в атомах. Однако фотоны низких энергий могут вызывать атомные или молекулярные возбуждения. При этом происходит полное поглощение энергии фотона атомом или молекулой, которые переходят в возбужденное состояние. Возбужденные атомы или молекулы, возвращаясь в основное состояние, излучают один или более фотонов, которые в свою очередь могут точно таким же путем поглощаться соседними атомами или молекулами. В конечном счете энергия первичного фотона преобразуется в тепловые колебания частиц вещества, поглощающего излучение. Энергия микроволнового излучения недостаточна для ионизации вещества. Воздействуя на биологическую ткань, оно способно только вызывать ее нагрев. Хотя высказывалось много соображений относительно других видов воздействия микроволнового излучения на живую ткань, ни одно из них не получило убедительного экспериментального подтверждения (в том числе и эффекты, связанные с низкими уровнями облучения).  [c.338]


ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

Прежде чем рассматривать взаимодействие фотона с электроном, напомним (см. 26.2), что фотон обладает не только энергией к, по и импульсом p=hv , т. е. ведет себя, грубо говоря, как движущийся шарик. В таком случае рассеяние фотонов электронами связано с обме-ном энергией и количеством движения при столкновениях.  [c.180]

Согласно КЭД, два электрических заряда взаимодействуют путем обмена виртуаль.ными фотонами-переносчиками. Их можно представить как бы окруженными облаками непрерывно излучаемых и поглощаемых фотонов. Наглядно взаимодействие заряженных частиц с излучением и между собой описывается с помощью диаграмм Фейнмана (рис. 60 и 61 сплошной линией изображены электроны, во шистой — фотоны). Правила построения диаграмм просты. Для рассеяния двух электронов все вершины диаграмм должны быть точно с тремя линиями, две из которых отвечают электрону, одна — фотону число и тип линий, не связывающих две верпшны, а просто входящих в нее, должны совпадать с числом и типом частиц в начале и конце реакции (рис. 60). Взаимодействие электрона с излучением может происходить как с участием одного фотона (рис. 61, а), так и двух, трех (рис. 61, б, в). Во взаимодействии могут приш1мать участие виртуальные электрон и позитрон (рис. 61, г).  [c.179]

Фотоэффект, эффект Комптона, рождение электронно-позитронных пар. Предположим, что через вещество распространяется монохроматический пучок фотонов. Энергию фотонов будем варьировать в широком интервале от оптического диапазона к рентгеновскому и далее — к -у-излу-чению. При прохождении через вещество интенсивность фотонного пучка будет уменьшаться за счет различных процессов фотон-электронного взаимодействия, приводящих к поглощению или рассеянию фотонов. Не будем принимать во внимание резонансные процессы взаимодействия излучения с веществом. Тогда остаются три процесса, приводящие к ослаблению фотонного пучка фотоэффект (фотоны поглощаются электронами), эффект Комптона (фотоны рассеиваются на электронах), рождение электроннв-позшп-  [c.157]

Так, для получения пучка уизлучения высокой энергии электронный пучок направляют на тугоплавкую мишень, из которой вылетает мощный, но, к сожалению, сильнейшим образом размытый по энергии пучок у-квантов. Большинство электронных ускорителей в настоящее время используется именно как источники у-излучения, а не электронов. Получающиеся на электронных ускорителях пучки тормозного Y-излучения хорошо коллимированы и имеют интенсивность, достаточную для проведения исследования различных фото-ядерных, фотомезонных и других фотореакций. Серьезным недостатком пучка тормозного излучения является неудачная форма его энергетического спектра. Спектр размазан по всей допустимой области энергий от энергии электронов тах до нуля. При этом наибольшая часть фотонов приходится на область низких энергий, так как везде, за исключением краев, кривая энергетического распределения фотонов ведет себя как (рис. 9.4). Эта размазанность тормозного спектра сильно осложняет экспериментальные исследования взаимодействий у-квантов с ядрами и элементарными частицами.  [c.480]

КВАНТОВАЯ ЭЛЕКТРОНИКА — область физики, охватывающая исследования методов усиления, генерации и преобразования частоты эл.-магн. колебаний и волн (в широком диапазоне длин волн, включающем радио- и оптич. диапазоны), основанных на вынужденном излучении или нелинейном взаимодействии излучения с веществом. Осн. роль в К. э. играют вынужденное испускание и положит, обратная связь. В обычных условиях вещество способно лии1ь поглощать или спонтанно (самопроизвольно и хаотически) испускать фотоны в соответствии с Больцмана распределением частиц вещества по уровням энергии. Вынужденное испускание при этом не существенно. Оно начинает играть роль лигнь при отклонении ансамбля микрочастиц от распределения Больцмана. Такое отклонение может быть достигнуто воздействием эл.-магн. поля, электронным ударом, неравновесным охлаждением, инжекцией носителей заряда через по-тенц. барьер в полупроводниках и т. п. В результате таких воздействий (накачки) поглощение эл.-магн. волн веществом уменьшается и при выравнивании населённостей на. энергетич. уровнях, подвергающихся действию накачки, интенсивности поглощения и вынужденного испускания сравниваются и взаимно гасятся. При этом эл.-магн. волна, частота к-рой резонансна но отношению к частоте перехода между этими, энергетич. уровнями, распространяется в веществе без поглощения. Такое состояние наз. н а-сыщением перехода.  [c.319]


Магнитооптическим можно также назвать предсказанный на основании электродипамич. рассмотрения эффект взаимодействия свота с магн. полем в отсутствие среды, в результате к-рого возможно рождение фотоном электрон-позитронной пары. При энергиях фотона (т — масса покоя электрона и пози-  [c.703]

Однако в горячих и плотных центр, ядрах звёзд, заканчивающих свою эволюцию, и особенно при вспышках сверхновых звёзд, темп-ра оказывается столь высокой, что нельзя пренебречь изменением энергии фотонов при рассеянии и асимметрией индикатрисы рассеяния, к рая уже при hv 0,1 показывает замет-нуго вытянутость вперёд, и поэтому ( os9) > 0. В таких условиях сечение рассеяния описывается общей Клейна — Вишины формулой, а сам процесс паз. комптоновским рассеянием. Бели плотность звё.здного вещества не очень велика и электронный газ невырожден, то при темп-ре (1—2) 10 К появляется значит, число электронно-позитронных пар, и под Пе в (6) нужно понимать суммарное число электронов и позитронов в единице объёма. Кроме того, помимо рассеяния становится существенным процесс рождения электронно-позитронных пар при взаимодействии фотонов в основном с эл.-магн. (кулоновским) полем атомных ядер.  [c.326]

Напр., глубоко неупругий процесс р ссапшш электрона па протоне выглядит в модели П. след, образом. Электрон с 4-импульсом I упруго рассеивается на П. с 4-им-пульсом хр и приобретает 4-импульс I (рис. 1 у — виртуальный фотон). Далее рассеянный П. и пассивный остаток протона превращаются в две адронные струи, одна из к-рых летит в направлении виртуального фотона, а другая — в направлении первичного протона. Т. к. соударение упругое, то массы начального и конечного П. равны, т. е. д - - хр) = х р , где q Г I — переданный партону 4-импульс. Отсюда следует, что рассеивающийся электрон взаимодействует только с П., несущим долю х импульса, равную X = Q /2 pg), где Если fa/p x) — число таких  [c.548]

Взаимодействие пионов с у-квантамн определяется их эл.-магн. свойствами — электрич. зарядом, эл.-магн. радиусом, формфактором, поляризуемостью. Эл.-магн. характеристики пионов были определены в спец, опытах, в к-рых изучались редкие процессы рассеяния пионов высоких энергий на атомных электронах и на кулоновском поле атомных ядер. Найденное значение эл.-магн. радиуса заряженных пионов составляет 0,66 (0,01)-10 см, поляризуемости а = 6,9-(1,4)> 10 см . Взаимодействие фотонов с адронами при энергиях выше 150 МэВ определяется в основном процессами фоторождения пионов.  [c.585]

Взаимодействие ффЛ описывает не только испускание в поглощение фотонов электронами в позитронами, но и такие процессы, как рождение фотонами эле трон-позитронвых пар (см. Рождение пар) или аннигиляция этих пар в фотоны. Обмен фотоном между двумя заряж. частицами приводит к взаимодействию их друг с другом. В результате возникает, напр., рассеяние электрона протоном, к-рое схематически изображается Фейнмана диаграммой, представленной на рис. 1. При переходе  [c.553]


Смотреть страницы где упоминается термин Взаимодействия фотонов с фотонами и электронами : [c.119]    [c.134]    [c.65]    [c.424]    [c.274]    [c.286]    [c.256]    [c.274]    [c.518]    [c.328]    [c.473]    [c.478]    [c.422]    [c.437]    [c.203]    [c.319]    [c.375]    [c.553]   
Смотреть главы в:

Физическая теория газовой динамики  -> Взаимодействия фотонов с фотонами и электронами



ПОИСК



Взаимодействие электрон-фотонное

Взаимодействие электрон-фотонное

Взаимодействие электрон-электронное

Взаимодействие электронами

Взаимодействие электронно-электронное

Фотонное эхо

Фотоны



© 2025 Mash-xxl.info Реклама на сайте