Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изображение при когерентном и некогерентном освещении

ИЗОБРАЖЕНИЕ ПРИ КОГЕРЕНТНОМ И НЕКОГЕРЕНТНОМ ОСВЕЩЕНИИ  [c.319]

Все нео бходимые элементы для исследования случая периодических структур уже получены в гл. 3 (пропускание частот при когерентном и некогерентном освещении), и мы ограничимся здесь лишь выводом выражения для контраста изображения миры Фуко, большое практическое применение которой оправдывает выбор этого примера.  [c.80]


РАСПРЕДЕЛЕНИЕ ОСВЕЩЕННОСТИ В ИЗОБРАЖЕНИИ ЩЕЛИ ПРИ КОГЕРЕНТНОМ И НЕКОГЕРЕНТНОМ ОСВЕЩЕНИИ  [c.18]

Зависимость интенсивности в центре изображения щели и его ширины от ширины щели для когерентного и некогерентного освещения иллюстрируется кривыми 1—4 на рис. 6. Различиями в этой зависимости (кривые 3 и 4) объясняется небольшое ухудшение четкости изображения линий на спектрограммах при фокусировке источника света на щель прибора.  [c.21]

В этой главе в общих чертах показаны главные положения фурье-анали-за при формировании оптического изображения и его обработке в условиях когерентного и некогерентного освещения. Они включают как одиночное преобразование Фурье, так и преобразование в сочетании со сверткой и корреляцией. Следует, однако, сразу же привлечь внимание к тому факту, что важность этих положений не ограничивается обработкой данных, имеющих оптическое происхождение. В настоящее время можно привести большое число примеров, когда методы оптической обработки используются для данных, по своей природе не являющихся оптическими. Основная причина кроется в том, что математические операции, которые применяются для большинства оптических систем, часто используются также в системах связи. Оптический аналог весьма привлекателен, поскольку ему свойственно преимущество двумерного представления и параллельной обработки данных. Этот способ во все увеличивающейся степени внедряется в практику в связи с разработкой электронно-оптических устройств сопряжения в сочетании с ЭВМ. Когда по каким-то причинам оптические методы не употребляются, ЭВМ может применяться изолированно в целях использования тех же фундаментальных принципов для цифрового изображения и обработки.  [c.84]

Особый интерес представляет гл. 7, где автор дает последовательное статистическое рассмотрение процессов регистрации объектов на фотоматериалах с подробным обсуждением различных критериев, применяемых при оценке качества изображения, и статистических моделей, учитываюш,их свойство зернистости приемников. Б гл. 8 и 9 на основе матричной теории рассматриваются свойства когерентного и частично когерентного излучения, а также вопросы частичной поляризации. Следует отметить, что в этих главах на основе единого метода автору удалось просто и наглядно вывести из общих формул предельные случаи, соответствующие строго когерентному и некогерентному освещению. Аналогичные предельные соотношения выведены и для случая поляризации света. Материал этих глав представляет большой научный интерес и выгодно отличается от содержания книг [2] и [61, где эти вопросы изложены в более популярной форме, но зато значительно беднее в познавательном отношении.  [c.8]


Вторая модель формирования изображения, которую мы рассматриваем в разд. 5.2, применима к условиям как когерентного, так и некогерентного освещения. И здесь Рэлей внес важный вклад [51], на этот раз под влиянием более ранних работ Эри и Гельмгольца. Модель представляет изображение как комбинацию картин Эри (или более сложных картин, если присутствуют аберрации), которые оптическая система должна создавать отдельно для света из каждой точки объекта. Если освещение некогерентно, то интенсивности картин Эри, определяемые всеми точками объекта, являются просто аддитивными. Если же оно когерентно, то присутствует интерференция и тогда изображение математически представляет собой комбинацию картин Эри с комплексными амплитудами, Рэлей рассматривал оба предельных случая. При пред-  [c.85]

Мы должны различать свойства опорной. волны и волны, освещающей объект, с одной стороны, и свойства восстанавливающей волны — с другой. Термин некогерентная голограмма обычно сохраняется за голограммами, записанными при использовании некогерентного света. При записи некогерентной голограммы интерференционные полосы образуются благодаря интерференции света от какой-либо точки изображения с самим собой. Для этого формируют два изображения объекта с помощью делительного устройства. Свет от соответствующих точек изображения является когерентным и может интерферировать. Свет, который не интерферирует, образует фоновое освещение голограммы [81. Другой способ получения интерференционных полос, когда источник света имеет низкую когерентность, заключается в формировании на голограмме изображения решетки и помещении объекта в один из порядков этой решетки [91.  [c.148]

Основная особенность процесса образования изображения при когерентном освещении состоит в том, что перед регистрацией сначала складываются комплексные амплитуды, а затем интенсивности. Как и в случае некогерентных систем, здесь, очевидно, будет зарегистрирована только интенсивность результирующего поля, а именно 1 Ej = ЕЕ — квадрат модуля вектора электрического поля Е. Однако к полю сигнала можно добавить когерентный фон и путем интерференции обратимо зарегистрировать как амплитуду, так и фазу комплексного сигнала. Типичный пример интерферометрического гетеродинирования, используемого в голографии, описан в разд. 6 гл. 1. Более полно регистрация фаз в оптике будет рассмотрена в гл. 6.  [c.90]

Распределение интенсивности по контуру спектральной линии зависит от ширины щели и способа ее освещения. Теоретически возможно освещение щели когерентными и некогерентными пучками лучей. В случае, когда на щель проектируется изображение источника или источник расположен очень близко к щели, колебания в каждой точке щели независимы друг от друга — способ освещения некогерентный. Если щель освещена плоской волной таким образом, что все точки щели находятся на одой волновой поверхности, то способ освещения когерентный. При других способах освещения щель является и когерентным и некогерентным источником излучения.  [c.381]

Её график представлен на рис. 2 (штриховая кривая). Ф-ция (12) выведена без учёта хроматической аберрации, в предположении освещения объекта когерентным пучком. Реальная частотно-контрастная характеристика, полученная с учётом хроматической аберрации и некогерентности освещающего объект пучка, представлена на рис. 2 сплошной линией. Это — затухающая при высоких пространственных частотах кривая, огибающие к-рой, изображенные штрих-пунктирной линией, с ростом R приближаются к оси абсцисс. Она получена для оптимальной дефокусировки Д /, при к-рой предельная частота Ло максимально сдвинута в сторону высоких частот при отсутствии глубоких провалов на промежуточных частотах. На рис. 2 видно, что структурные фурье-компоненты с пространств, частотами <Ло передаются на изображении с контрастом  [c.548]

В первой модели делается акцент на общий характер дифракции (рассеяние) света от объекта, когда условия по крайней мере частично когерентны, и на способ сведения света для формирования изображения. Аспекты анализа Фурье, относящиеся к первой части этого вопроса, уже знакомы нам по гл. 3 и 4. В разд. 5.3 мы рассматриваем их снова на этот раз с учетом второго этапа формирования изображения. Эта модель первоначально была сформулирована (в основном качественно) в 1873 г. Э. Аббе [1], который занимался проблемами наблюдений периодических объектов под микроскопом. Как можно сказать, пользуясь современной терминологией, он выяснил, что при способах освещения, используемых обычно в оптической микроскопии, формирование изображения вовсе не является полностью некогерентным процессом, как иногда полагают в действительности в некоторых современных системах он может быть почти когерентным.  [c.85]


Книга содержит введение в качественную теорию дифракции и анализ образования изображений при некогерентном и когерентном освещении. В ней рассматриваются свойства когерентного света и излагаются теоретические и экспериментальные основы оптической голографии (восстановления волнового фронта).  [c.4]

Можно представить себе и многие другие примеры синтеза изображения как при некогерентном (настоящая глава), так и при когерентном освещении.  [c.56]

В работе [7.17] была рассчитана зависимость этих величин от уо в случае щелевого некогерентного источника и щелевой функцин зрачка. Если 0з — угол, под которым виден источник, а 0р — угол, под которым виден зрачок системы, формирующей изображение, со стороны объекта, то Ж А (го) и Ж А (2уо) оказываются функциями отнощения 0р/0з (так же как и Уо)- Это указывает на то, что характеристики системы зависят от когерентных свойств освещения объекта. На рис. 7.13 представлены кривые кажущихся передаточных функций на частотах Уо и 2уо при разных значениях отношения 0р/0з. Заметим, что условие 0р/0з— 0 соответствует приближению к полностью некогерентному освещению, а условие 0р/0з оо — приближению к полной когерентности.  [c.312]

В заключение отметим, что распределение средней интенсивности Т х,у) в изображении когерентно освещаемого шероховатого объекта совпадает с интенсивностью, которая. наблюдалась бы, если бы объект освещался пространственно некогерентным светом с той же самой спектральной плотностью мощности. Некогерентное освещение можно считать эквивалентным быстрой временной последовательности пространственно-когерентных волновых фронтов, эффективная фазовая структура каждого из которых исключительно сложна и совершенно не зависит от фазовой структуры других членов последовательности. Таким образом, проинтегрированная по времени интенсивность изображения, наблюдаемая при пространственно-некогерентном освещении, идентична усредненной по ансамблю интенсивности 7 (х, у) (в предположении одинаковой ширины по-  [c.331]

О действии центрального экранирования зрачка на дифракционное изображение светящейся точки в идеальной системе. Известно, что возникновение изображения в микроскопе принято строить на основе теории Аббе для несамосветящихся объектов. Последующие за Аббе и Рэлеем теоретические и экспериментальные работы Мандельштама показали, что изображения светящегося и несамосветящегося предмета при соответствующем освещении получаются почти идентичными. Меняя условия освещенности, Д. С. Рождественский [59] доказал, что можно изменять величину предела разрешения, получаемую в случае когерентного освещения несамосветящихся точек, почти до такой, какая соответствует светящимся точкам, излучающим некогерентный свет. Степень приближения к некогерентному освещению определяется, по Д. С. Рождественскому, ко ( ициентом некогерентности, равным отношению числовой апертуры конденсора к числовой апертуре объектива микроскопа.  [c.148]

Дефекты оптических изображений (влияние аберраций) можно исследовать либо в рамках геометрической оптики (когда аберрации велики), либо в рамках теории дифракции (когда аберрации достаточно малы). Раньше обычно возникали трудности при попытках сравнить результаты этих двух подходов, поскольку исходные положения последних совершенно различны. Мы попытались развить 6a iee единообразный метод, основанный на понятии о деформации волновых фронтов. При изложении геометрической теории аберраций (гл. 5) мы нашли возможным и целесообразным использовать старый метод Шварцшильда после небо.льшого изменения введенного им эйконала. В главе, посвященной дифракционной теории аберраций (гл, 9), дается обзор теории Нижбера — Г1,ернике в пей излагается также вводный раздел об изображении при когерентном и некогерентном освещении протяженных объектов, где используются в основном преобразования Фурье.  [c.12]

Книга известных французских специалистов Мареша-ля и Франсона Структура оптического изображения восполняет имеющийся пробел в литературе, посвященной оптическим системам. В этой книге изложена в сжатом (иногда даже чрезмерно), но наглядном виде теория образования изображений оптическими приборами, приведен математический аппарат, необходимый для проведения вычислений, решен ряд конкретных задач, связанных с распределением света в изображениях сложных объектов при различных условиях освещения (когерентном, частично когерентном и некогерентном), и приведен довольно разнообразный иллю1стративный материал, относящийся к этому вопросу.  [c.6]

С помощью весьма трудоемких вычислений мож но при любом контрасте изучить, как из1меняется изображение некоторых типичных объектов точек, линий, краев светлого поля и т. д. На фиг. 64 приведены полученные Сланским результаты, дающие представление об изменении вида изображения, когда понемногу раскрывается отверстие конденсора (а возрастает) при а—О результаты соответствуют когерентному освещению, а при а=оо — некогерентному освещению. Отметим, что изменения в основном происходят достаточно монотонно можно считать, что до значения а, равного приблизительно А, изображение остается практически таким же, как и при когерентном освещении  [c.146]

При обработке электрических сигналов устройство ввода должно иметь электрический вход и оптический выход. Обычно в этом случае в качестве ПМС используют одноканальные или многоканальные акустооптиче-ские модуляторы света либо электроннолучевые трубки с термопластической мишенью типа Lumatron. Для обработки изображений устройство ввода должно иметь оптический вход и оптический выход и преобразовывать, таким образом, изображения, регистрируемые в некогерентном свете, в изображения, формируемые при когерентном освещении. Обычно такое преобразование сопровождается усилением яркости изображений и изменением спектрального состава излучения.  [c.201]


Из (7.108) видно, что вне области G средняя интенсивность света в два раза выше, чем в пределах области С, при условии to(x, ) с = )U, уфс -Это объясняется тем, что световые поля, соотретствующие первой и второй зкспозициям вне области G, являются пространственно когерентными и интерферируют, тогда как в пределах области G вследствие нарушения микрорельефа зти поля оказываются пространственно некогерентными и, следовательно, складываются по интенсивности. В силу такого различия освещенности область С может быть выявлена и в зтом случае, однако с меньшей уверенностью, так как изображение G в зтом случае формируется на ярком фоне. Более того, амплитудный козффициент отражения может значительно изменяться на поверхности объекта и может быть в области С больше, чем на других участках поверхности, что еще больше затруднит ее выявление. Это означает, что пространственная ( 1лырация в темной полосе обладает очевидными преимуществами при решении рассматриваемой задачи.  [c.185]

Отсюда естественно возникает мысль, что новое фильтрование простран-ственных частот, осуществленное в фотографическом изображении, может его улучшить. Действительно, законы фильтрования — оптический v )] и эмульсии [deiyJ, v )] — оба являются законами пропускания низких частот , и различные частоты постепенно ослабляются вплоть до той, при которой пропускание равно нулю (например, при предельной оптической частоте). Но мы видели, что контраст подробностей в изображениях в сильной степени зависит от хода закона фильтрования — даже стигматический прибор с круглым зрачком дает для изображения маленькой темной линии контраст 8/(1,2Л/а ) в случае некогерентного освещения и приблизительно вдвое больше при когерентном освещении. Однако полная ширина полосы пропускания частот при некогерентном освещении равна 4а Д и только 2а % при когерентном освещении пучком, параллельным оси. Следовательно, изменяя множитель контраста в пределах полосы пропускания, можно заметно влиять на контраст участков изображения. Предыдущие соображения наводят на мысль, что преобразованием этого закона, исходя из случая некогерентного освещения, можно, в частности, вчетверо увеличить контраст изображения маленькой темной линии.  [c.253]

Гл. 6 содержит теоретические и экспериментальные основы оптической голографии, которую Габор назвал методом образования изображения путем восстановления волнового фронта. Здесь рассматриваются проективная голография Френеля, без-линзовая голография Фурье с высоким пространственным разрешением и метод устранения эффекта протяженности источника с целью сохранения высокого пространственного разрешения по предмету. Затем излагается требование к когерентности света в голографии. В конце главы описан классический эксперимент Строука с голограммой, полученной при некогерентном освещении, и даны экспериментальные обоснования возможности применения голографических принципов для рентгеновских лучей.  [c.9]

II ротяженный предмет можно рас-сматривать как совокупность точечных источников, каждый из которых отображается системой в виде диска Эйри с окружающими его дифракционными кольцами. Если соседние точки предмета можно считать некогерентными источниками, то испускаемые ими волны не интерферируют и происходит сложение интенсивностей, т. е. результирующее изображение находится как простое наложение дифракционных картин от отдельных точек. Этот случай реализуется для самосветящихся (или некогерентно освещенных) объектов и важен в теории телескопа. Другой предельный случай когерентно освещенных объектов может быть реализован при наблюдении в микроскоп. Здесь для нахождения изображения требуется сложить напряженности полей в дифракционных картинах от отдельных точек предмета.  [c.366]

Размер освещенной области в плоскости изображения конденсора (плоскость предмета объектива) значительно больше, чем эффективный размер диска Эйри, создаваемого одной точкой источника (в обозначениях, принятых в п. 10.5.1, р /л). Согласно п. 10.5.1 при таких условиях комплексная степень когерентности для любой пары точек в плоскости предмета объектива совпадает со степенью когерентности, обусловленной некогерентным источником, заполняющим конденсор. Кроме того, степень когерентности не зависит от аберраций конденсора. Очевидно, что разрешающая сила микроскопа зависит только от степени когерентности света, падающего на предмет и от свойств объектива. Следовательно, аберрации конденсора совершенно не влияют на разре-шающую силу микроскопа. Этот важный результат, впервые полученный другим способом Цернике [671, показывает ошибочность широко распространенного мнения, согласно которому хорошо скорректированный конденсор обладает преимуществами при получении высокой разрешающей силы.  [c.481]

Формула (20) позволяет изучить зависимость распределения интепсивпостн в плоскости изображения объектива микроскопа от отношения числовых апертур т. В частности, определим интенсивность в точке, находящейся посередине между Р[ и Рг- Будем считать, что изображения отверсти начинают разрешаться, когда интенсивность в этой точке на 26,5% меньше, чем интенсивность в каждой из наших двух точек. Величина 26,5% соответствует критерию Рэлея для круглого отверстия при некогерентном освещении (см. п. 8.6.2). Выразим предельное разделение (Р,Ра)пред. соответствующее этому критерию, в одинаковом виде как для некогерентного (см. (8.6.32)), так и для когерентного (см. (8.6.55)) освещения  [c.482]

I0.5.3. Получение изображения при частично когерентном квазимонохрома-тическом освещении ), а. Распространение взаимной интенсивности через оптическую систему. В 9.5 было описано несколько общих методов изучения отображения протяженных объектов. Рассматривались случаи полностью когерентного (п. 9.5.1) и полностью некогерентного (п. 9.5.2) освещения. В первом случае рассматривалось распрострапепие через систему комплексной амплитуды, во втором — интенсивности. Сейчас мы исследуем более общий с гучай частично когерентного квазимонохроматического освещения. Изучаемой величиной здесь является взаимная интенсивность.  [c.484]

И радиоантеиным сканирующим системам. Позже с соответствующими оговорками мы проанализируем свойства оптических систем, линейных относительно комплексной амплитуды, т. е. систем, которые работают с когерентным излучением. Но пока что ограничимся рассмотрением некоторых идеальных оптических систем, для которых освещенность некогерентна, увеличение равно единице и распределение освещенности на изображении точечного источника не изменяется в пределах рабочего поля прибора. Степень практической применимости результатов, полученных при таких ограничениях, будет исследована позже. Перейдем теперь к сравнению характеристик временных и пространственных фильтров.  [c.31]


Смотреть страницы где упоминается термин Изображение при когерентном и некогерентном освещении : [c.117]    [c.472]   
Смотреть главы в:

Дифракция и волноводное распространение оптического излучения  -> Изображение при когерентном и некогерентном освещении



ПОИСК



Изображение когерентное

Изображение когерентное освещение

Изображение некогерентное

Изображение некогерентное освещение

Когерентная (-ое)

Когерентное освещение

Когерентность

Некогерентность

Распределение освещенности в изображении щели при когерентном и некогерентном освещении



© 2025 Mash-xxl.info Реклама на сайте