Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистические явления в оптике

Более детальное изложение статистических явлений в оптике см. в книге Г. С. Горелик, Колебания и волны, Физматгиз, 1959, гл. X.  [c.94]

Статистические явления в оптике  [c.13]

Поскольку данная книга посвящена в основном статистическим проблемам в оптике, мы начнем с четкого изложения математических методов, используемых при анализе случайных или статистических явлений. Мы будем исходить из того, что читатель по крайней мере частично знаком с основными элементами теории вероятностей. В данной главе мы дадим общий обзор наиболее важного материала, установим обозначения и представим ряд конкретных результатов, которыми будем пользоваться в дальнейшем в приложениях теории. Особое внимание обращается не на математическую строгость, а на физическую наглядность. Для более полного изучения теории вероятностей читатель может обратиться к руководствам по статистике (например, [2.1, 2.2]). Кроме того, существует много прекрасных книг технического характера, в которых излагается теория случайных переменных и случайных процессов (например, [2.3— 2.8]).  [c.18]


Статистические явления так часто встречаются в оптике, что можно было бы без труда составить длинный список примеров. Из-за щирокого разнообразия таких задач трудно найти общую схему для их классификации. Здесь мы попытаемся установить некоторые общие аспекты оптики, которые требуют статистических методов исследования. Эти аспекты удобно обсудить в связи с проблемой формирования оптического изображения.  [c.13]

За введением следует восемь глав. Для тех научных работников и инженеров, работающих в области оптики, которые пожелали бы повысить свою компетентность в статистических методах, в гл. 2 представлен обзор теории вероятностей, а гл. 3 содержит обзор теории случайных процессов, используемых в качестве моделей для статистических явлений, описываемых в последующих главах. Читатель, уже знакомый с этими вопросами, может сразу перейти к гл. 4, рассматривая предыдущий материал в качестве справочного.  [c.16]

КВАНТОВАЯ ОПТИКА, раздел статистической оптики, изучающий микроструктуру световых полей и оптич. явления, в к-рых видна квант, природа света. Представление о квант, структуре излучения введено нем, физиком-М. Планком в 1900.  [c.262]

Благодаря проникновению в акустику, гидродинамику, оптику и в явления капиллярности, механика некоторое время как бы преобладала над всеми этими областями. Труднее было ей вобрать в себя новую область науки, возникшую в XIX в., — термодинамику. Если один из двух основных принципов этой науки — принцип сохранения энергии — может быть легко объяснен на основании понятий механики, то этого нельзя сказать о втором — о возрастании энтропии. Работы Клаузиуса и Больцмана по изучению аналогии термодинамических величин с некоторыми величинами, играющими роль в периодических движениях, работы, которые и сейчас вполне современны, не смогли все-таки связать обе точки зрения. Но замечательная кинетическая теория газов Максвелла и Больцмана и более общая доктрина — так называемая статистическая механика Больцмана и Гиббса — показали, что динамика, если дополнить ее понятиями теории вероятности, позволяет интерпретировать основные положения термодинамики.  [c.641]

СТАТИСТИЧЕСКАЯ ОПТИКА — раздел оптики, изучающий оптич. явления н процессы, для описания и-рых используются статистич. понятия и стохастич. методы анализа. С, о. включает большой круг проблем изучение шумов и флуктуаций в источниках оптич. излучения, статистич. проблемы взаимодействия световых полей с веществом, исследование распространения оптич. волн в случайно неоднородных и турбулентных средах, статистич. проблемы приёма и обработки информации в оптич. диапазоне длин волы п т. л.  [c.664]


Лишь немногие задачи физики привлекали в прошлом большее внимание, чем задачи, поставленные корпускулярно-волновым дуализмом света. История решения этих задач общеизвестна. Кульминационным моментом ее явилось построение квантовой теории электромагнитного поля. Однако по некоторым причинам, которые частично имеют математический характер, а частично связаны, по-видимому, со случайностями истории, в квантовой электродинамике рассматривалось очень мало вопросов, имеющих отношение к проблемам оптики. Так, например, статистические свойства пучка фотонов до сих пор описывались почти исключительно классическими или полуклассическими методами. При таком описании можно, конечно, получить некоторую информацию, но неизбежно остаются открытыми серьезные вопросы непротиворечивости теории, а также можно выпустить из поля зрения квантовые явления, которые не имеют классических аналогий. В качестве примера можно указать на корпускулярно-волновой дуализм света, который должен быть центральным вопросом любой теории, правильно описывающей статистику фотонов, и который исчезает при переходе к классическому пределу. Необходимость в более последовательной теории приводит нас к разработке квантовомеханического подхода к проблемам статистики фотонов. Некоторые результаты такого подхода изложены в статье [1]. Настоящая работа будет посвящена детальному анализу предпосылок, на основании которых получены результаты работы [1].  [c.66]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]


Нужно заметить, что в смежной с нелинейной акустикой области волновых процессов — в нелинейной оптике — статистические явления изучены весьма полно [117]. Математический аппарат здесь во многом более прост, так как из-за сильной дисперсии в оптике возможно оперировать медленно изменяющимися комплексными амплитудами нескольких квазимонохроматических волн. Относительная простота, а также наличие важных практических приложений стимулировали исследования вопросов статистики мощного лазерного излучения. В нас--тоящее время статистическая нелинейная оптика [117] представляет собой довольно развитую область, результаты которой многократно подвергались экспериментальной проверке. Поэтому всюду, где это возможно (а именно в задачах о модулированных звуковых волнах в области до образования разрывов), мы будем сопоставлять результаты этой главы с выводами монографии [117].  [c.252]

Следует заметить, что нельзя провести резкую границу между явлениями, подчиняющимися феноменологической термодинамике, и флуктуационными явлениями . Так, например, тепловое излучение мы рассматривали в 25 и 26 с точки зрения феноменологической термодинамики. При этом состояние этого излучепия мы характеризовали так, как это делается в оптике,— его интенсивностью или его энергией. Выведенные в 25 и 26 законы Кирхгофа и Стефана — Больцмана, а также упомянутая там формула Планка относятся, в свете сказанного в настоящем параграфе, к средним значениям интенсивности и энергии излучения. Однако в любой физической системе присутствует излучение, другими словами, электромагнитное поле не только оптических частот, но и более низких радиочастот. В области радиочастот наличие этого излучения проявляется в явлениях, называемых обычно тепловыми флуктуациями тока и тепловьпги шумовыми (или флуктуационными) электродвижущими силами . Эти явления обычно рассматриваются как явления флуктуацион-ные, и при их теоретическом разборе применяются методы статистической физики. Это объясняется не разной природой явлений в оптическом диапазоне частот, с одной стороны, и радиодиапазоне — с другой, а только тем, что в этих двух диапазонах пас интересуют разные физические величины.  [c.112]

Лоренц (ЬогеШг) Хендрик Антон (1853-1928) — известный нидерландский физик-теоретик. Окончил Лейденский университет (1872 г.). Научные труды относятся к областям электродинамики, термодинамики, статистической механики, оптики, квантовой теории, атомной физики и др. Создал классическую электронную теорию вещества, базирующуюся на анализе движения дискретных зарядов, и на основе ее, в частности, вывел зависимость диэлектрической проницаемости от плотности диэлектрика (формула Лоренца-Лоренца), дал выражение для силы, действую1цей на движущийся в электромагнитном поле заряд (сила Лоренца), развил теорию дисперсии света. Предсказал явление расщепления спектральных линий в сильном магнитном поле (Нобелевская премия (совместно с П. Зееманом) в 1902 г.). Создал электродинамику движущихся сред. Вывел в 1904 г. формулы, связывающие между собой пространственные координаты и моменты времени одного и того же события в разных инерциальных системах отсчета (преобразование Лоренца). Впервые получил зависимость массы электрона от скорости. Своими работами подготовил переход к квантовой механике и теории относительности. Ряд исследований по кинетической теории газов, кинетике твердых тел, электронной тео рии металлов (1904 г.).  [c.261]

Предлагаемая вниманию читателей вторая часть книги Введение в нелинейную оптику является продолжением первой части ( Классическое рассмотрение ), вышедшей в издательстве Мир в 1973 г. Книга содержит квантовофизическое описание нелинейных оптических явлений и охватывает широкий круг проблем квантовой механики, квантовой электродинамики, квантовой электроники, статистической физики, физики твердого тела, линейной и нелинейной оптики.  [c.4]

В материале учебного пособия естественным образом нашли свое отражение научные интересы автора, а также его коллег, работающих в области когерентной оптики в ряде ведущих российских вузов и институтов РАН. В нем учтены многолетние традиции преподавания курса оптики когерентного излучения на кафедре оптики и спектроскопии физического факультета МГУ, а также опыт использования приобретенных знаний выпускниками кафедры на практике, в ходе научно-исследовательских работ в различных НИИ и ОКБ. Именно исходя из запросов практики, в пособие включены некоторые разделы, которые обычно включаются в руководства по статистической оптике. К ним, в частности, относятся элементы теории когерентности и оптики случайно-неоднородных сред. Это связано с тем, что при распространении изл) ения через некоторые оптические системы и передающие среды происходит заметное изменение степени его когерентности. Благодаря влиянию ответственных за это физических факторов в когерентных световых колебаниях появляется случайная составляющая, без учета которой невозможно корректное описание изучаемых оптических явлений. Однако, несмотря па стремление автора максимально обобщить современное понимание предмета когерентной оптики и ее содержательной части, круг вопросов, включенных в пособие, и характер их освещения не может претендовать па исчерпывающую полноту, хотя бы из естественных ограничений объема пособия. В частности, по последней причине, исключены из рассмотрения разнообразные нелинейные эффекты, происходящие в поле когерентного излучения. Предполагается, что читатель сможет самостоятельно удовлетворить свой интерес к слабо освещенным вопросам, используя приводимые в пособии развернутые библиографические сведения. Для удобства обращения к используемым источникам информации заголовок каждого параграфа содержит соответствующие литературные ссылки. Дополнительную информацию о новых направлениях физической оптики и наиболее интересных научных результатах, полученных в последнеее время, можно получить из приложения "Семинарий". Семинарий содержит постоянно обновляемое изложение докладов, сделанных па семинаре по когерентной оптике кафедры оптики и спектроскопии физического факультета МГУ.  [c.9]


Вопрос о структуре изображений все больше и больше связывается с вопросом о помехах ( шумах ), играющих особенно важную роль в приемниках, но отчасти и в самой оптической системе, в которой неизбежно рассеяние света на поверхностях и оправах линз, а также на других дефектах материала или обработки линз и зеркал. Ясно, что эти явления имеют статистический характер, так как не могут быть заранее определены. Частично этот вопрос рассмотрен в упомянутой выше книге Линфута [3]. Значительно полнее он исследован в предлагаемой вниманию читателя монографии известного американского ученого О Нейла Введение в статистическую оптику .  [c.7]

Отражение может быть зеркальным или диффузным. Теория диффузного отражения не будет рассматриваться в этой книге. Мы лишь напомним, что любая достаточно малая часть диффузно отражаюо1ей поверхности должна представлять собой систему, подчиняющуюся обычным законам волновой оптики (например, это может быть волнистая поверхность с плоскими участками различных ориентаций). Статистический эффект обычного отражения от этих поверхностей вызывает явление, известное как диффузное отражение. Им может обладать только поверхность с размерами, значительно превышающими длину волны. По этой причине понятие диффузного отражения встретится только в настоящей главе (разд. 8.42).  [c.125]


Смотреть страницы где упоминается термин Статистические явления в оптике : [c.665]    [c.235]    [c.267]    [c.491]    [c.112]    [c.612]    [c.419]    [c.490]    [c.546]    [c.339]    [c.297]    [c.351]   
Смотреть главы в:

Статистическая оптика  -> Статистические явления в оптике



ПОИСК



Статистические явления

Явление



© 2025 Mash-xxl.info Реклама на сайте