Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Л е о н т о в и ч, Введение в термодинамику

Итак, закончено краткое изложение основных положений технической, термодинамики, и нам хотелось бы еще раз обратить внимание читателя на следующее обстоятельство. Как уже отмечалось во введении, термодинамика построена весьма просто опытным путем установлены два основных закона, и применение к ним обычного аппарата математического анализа позволило получить все те разнообразные выводы, которые были предложены вниманию читателя. В этой простоте — универсальность термодинамики, выделяющая ее из многих других физических теорий. Мы хотим закончить эту книгу словами А. Эйнштейна Теория производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела па меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков) .  [c.502]


Как мы уже упоминали во введении, термодинамика не пользуется модельными атомно-молекулярными представлениями, и можно было бы изложить все содержание термодинамики, ни разу не употребив термины атом, молекула, ион, фотон и т. д. Мы, однако, будем в отдельных местах обращаться к атомно-молекулярным представлениям, но в чисто иллюстративных целях.  [c.12]

Как уже указывалось во введении, хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической и особенно с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика коррозионных процессов, а применительно к химической коррозии — кинетика химической коррозии металлов.  [c.39]

С понятием температуры тесно переплетается (и часто путается) понятие теплоты. Из повседневного опыта известно, что для нагревания одних веществ требуется больше тепла, чем для других, однако непосредственно не очевидно, почему это так. Тем не менее при достаточной проницательности на основании повседневного опыта можно сделать ряд весьма фундаментальных выводов относительно теплового поведения вещества эти выводы включают законы термодинамики. Нулевой закон, названный так потому, что он был сформулирован после первого и второго законов, касается состояния тел, приведенных в тепловой контакт друг с другом. Чтобы ясно понять, что это значит, прежде всего необходимо уточнить ряд понятий. Приведенные ниже определения хотя и не являются строгими, позволяют нам сделать несколько общих замечаний о смысле температуры и теплового поведения веществ, которые полезны при введении в термометрию. Более подробное обсуждение основ теплофизики читатель может найти в монографиях по термодинамике и статистической механике, указанных в списке литературы к данной главе.  [c.12]

Л е о п т о в и ч М. А. Введение в термодинамику. ГИТТЛ, 1951.  [c.550]

Кроме того, лишенным смысла является введение понятия температуры смеси Т при неравных между собой температурах составляющих Тi, как это делается в той же статье [33], а также в [30]. Этот вопрос будет рассмотрен подробнее ниже при обсуждении термодинамики многофазных сред.  [c.29]

Традиционная форма уравнений газовой динамики содержит давление р. Для введения этой величины в систему уравнений (1.2) берется первое начало термодинамики в форме  [c.9]


На последнем этапе вычислений использовано снова равенство (2.3) и первое начало термодинамики (1.3) для введения в систему переменных давления р. Таким образом получена традиционная форма уравнения движения  [c.13]

Несмотря на сугубую сложность предмета книга написана четко и увлекательно. Все ее элементы компактны и логически связаны. Я бы посоветовал читателю прочесть ее с начала до конца, не отрываясь и только после этого обратиться к более конкретным монографиям. Этот учебник—хорошее введение в термодинамику и статистическую физику, полезное не только студентам и аспирантам, но и всем физикам, которые захотят вспомнить эти важнейшие разделы науки.  [c.8]

Во всех подобных случаях можно говорить об условных равновесиях система равновесна только при специальных условиях, исключающих возможность достижения ею полного равновесия. Условными являются, очевидно, и введенные ранее ( 2) ограниченные равновесия. Строго говоря, это понятие применимо и к любым другим равновесиям. Например, условие кинетического торможения ядерных превращений в веществах подразумевается в большинстве интересующих термодинамику систем. Поэтому условность равновесия специально не подчеркивается, а существующие ограничения на равновесия включаются в описание системы.  [c.36]

Но в отличие от обобщенных сил Xj, входящих в выражения для работы и заимствованных термодинамикой у других разделов физики, равенствами (7.1), (7.4) определяется новая величина цг. Введение любого нового свойства необходимо обосновать физически, т. е. показать способ его измерения либо расчета из уже известных свойств. Рассмотрим с той  [c.61]

Свойствам идеальных систем, газов и растворов, е термодинамике отводится особая роль они используются для параметризации уравнений реальных систем, при которой эти уравнения приобретают тот же вид, что и уравнения идеальных систем, при замене в них некоторых из независимых переменных специально введенными функциями. Так, вместо (10.62) для У го составляющего реальной газовой смеси записывают  [c.101]

Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Книга состоит из трех частей в первой части излагаются теоретические основы термодинамики во второй — ее приложения в третьей — введение в неравновесную термодинамику.  [c.7]

Основное уравнение термодинамики для квази-статических процессов позволяет, как мы видели, ввести ряд термодинамических потенциалов, с помощью которых можно исследовать поведение термодинамических систем при этих процессах. Покажем теперь, что основное неравенство термодинамики для нестатических процессов с помощью введенных термодинамических потенциалов позволяет установить общие условия термодинамического равновесия и устойчивости различных систем. С точки зрения термодинамики эти условия являются достаточными. Однако, допуская в соответствии с опытом существование флуктуаций в системах (и, следовательно, выходя за рамки исходных положений термодинамики), можно доказать, что они являются также и необходимыми.  [c.119]

Как. отмечалось во введении, статистическая физика при изучении тепловой формы движения материи использует, в отличие от термодинамики, представления о молекулярном строении вещества.  [c.181]

В соответствии с введенным Гиббсом (отвечающим термодинамике) статистическим определением энтропии (см. ниже) функция p(q, р) зависит лишь от однозначных аддитивных интегралов движения. Известны три таких интеграла движения энергия Н, импульс Р и момент импульса М. Поэтому  [c.195]

Химический потенциал был впервые введен Гиббсом и отнесен им к единице массы. Он играет большую роль в термодинамике фазовых превращений и химической термодинамике, так как в этих разделах рассматриваются процессы, идущие с перераспределением массы системы.  [c.206]

Предметом изучения термодинамики являются закономерности превращения энергии в различных физических, химических и других процессах можно сказать, что термодинамика представляет собой в самом общем смысле науку об энергии. Термодинамика не ограничивается анализом каких-либо отдельных или частных видов энергии, как это имеет место, например, в механике, где изучается лишь энергия механического движения (т. е. кинетическая и потенциальная энергия тела), но рассматривает все существующие виды энергии и всевозможные ее превращения. Отличительной чертой термодинамики является введение в совокупность исследуемых видов энергии внутренней энергии тел, что собственно и делает термодинамику общей наукой о превращениях энергии. Действительно, любой макроскопический процесс сопровождается изменением внутренней энергии участвующих в процессе тел, вследствие чего превращение внутренней энергии является наиболее общей особенностью макроскопических процессов. Так как внутренняя энергия обусловлена движением составляющих тело частиц, называемым тепловым, то содержание термодинамики можно формулировать как изучение теплового движения, понимаемого в самом широком смысле.  [c.7]


Кроме того, введение в выражение для или Т( вторых и более высокого порядка производных от скорости по координате не отвечает схеме зависимостей, устанавливаемых термодинамикой необратимых процессов для явлений переноса, согласно которой, как это было подробно выяснено в гл. X, плотность потока импульса должна выражаться через градиент скорости.  [c.396]

Согласно (1.73) —(1.74) летучесть можно определить как давление, которое должна иметь реальная система, чтобы оказывать такое же действие, как и идеальная система. Поэтому летучесть можно назвать исправленным давлением . Введение летучести позволяет формальным путем сохранить простоту уравнений термодинамики идеальных газов. Трудности, связанные с учетом отклонения газов от идеального поведения, переносятся на вычисление летучести.  [c.21]

Теория термодинамических процессов в термодинамике в значительной степени идеализирована за счет введения таких понятий, как понятие обратимости процессов, представления рабочего тела как идеального газа, использования предпосылки о постоянстве численного значения показателя процесса как политропы с постоянным значением. Переход от идеализированных уравнений, получаемых при этих предпосылках, к реальным в этом случае осуществляется за счет введения в расчеты опытных коэффициентов, учитывающих отклонения идеализированных процессов от реальных.  [c.6]

Де Бур М. Введение в молекулярную физику и термодинамику. М. 1962.  [c.470]

Существует, однако, другой метод установления соотношения (2.13), более общий и непосредственно вытекающий из второго начала термодинамики (точнее из второй формулировки этого начала), не вызывающий необходимости обращения к циклу Карно. Очевидно, что цикл Карно в сфере развития понятий и приложений второго начала термодинамики имеет всего лишь частное значение и поэтому не вполне логично обосновывать с его помощью существование энтропии. Более убедительным является анализ цикла Карно на основе введенного независимо от него понятия энтропии. Как это можно сделать, ясно из нижеследующего.  [c.84]

При введении новой величины невольно возникают два вопроса во-первых, насколько эта величина важна и необходима, какова ее практическая значимость во-вторых, как пользоваться этой величиной, как ее рассчитывать. Отвечая на первый вопрос, отметим, что энтропия— крайне важная в термодинамике величина, позволяющая выразить второй закон количественно. Многочисленные примеры и иллюстрации этого положения содержатся в последующих параграфах и главах.  [c.60]

Следует подчеркнуть одно весьма важное обстоятельство уравнение (7.1) отнюдь не следует рассматривать лишь как расширенный вариант уравнения первого закона термодинамики, с введением которого применявшееся ранее уравнение (2.1а) dq—du pdv — утрачивает свое значение. Уравнение (2.1а) и применительно к потоку является самостоятельным. Иными словами, уравнения (7.1) и (2.1а) выражают два независимых условия , не вытекающих одно из другого при решении задач эти уравнения можно комбинировать (например, складывать), но число используемых уравнений должно оставаться равным двум.  [c.167]

В заключение следует отметить, что введение понятия энтропии было сделано пока применительно к идеальному газу, и все утверждения относительно свойств энтропии не могут пока быть обоснованно распространены и на реальные газы. Однако, как будет показано в главе VIII Второй закон термодинамики , понятие энтропии может быть установлено достаточно точно независимо от свойств рабочего тела. Пока же этот параметр будет использован как весьма удобный при анализе процессов идеального газа.  [c.85]

Транзитивностью обладает не только тепловое, но и любое другое контактное равновесие. Аналогично введению в термодинамику понятия температуры, можно было бы постулировать существование давления и его равенство в системах в качестве необходимого условия их механического равновесия, существование химических потенциалов веществ и их равенство в рассматриваемых системах как необходимое условие химического или диффузионного равновесия и т. п. Так же, как и в случае с температурой, можно использовать одну из систем в качестве лрйбора, измеряющего соответствующее внутреннее свойство, — для измерения давлений это манометр, для измерения химических потенциалов, например, подходящий электрохимический элемент и т. д.  [c.23]

Прежде чем пользоваться термодинамическими методами, надо количественно описать интересующий объект и происходящие в нем процессы на языке понятий и законов этой науки. Термодинамические соотношения и выводы применяются не к реальным объектам и явлениям, а к их моделям — термодинамическим системам и термодинамическим процессам. Создание термодинамической модели — один из наиболее трудных этапов работы, связанный, как правило, с необходимостью использования наиболее серьезных приближений. Среди них применение равновесного описания для неравновесных в принципе процессов и состояний, введение понятий закрытой изолированной, изотермической и т. п. системы для объектов, которые в действительности не соответствуют таким идеализированным схемам, разделение множества присутствующих в системе веществ на термодинамически значимые составляющие и незначимые примеси и многие другие упрощения. Ранее, хотя и подчеркивалась ограниченность выразительных средств термодинамики по сравнению с бесконечно сложными, взаимосвязанными явлениями природы, вопросы создания термодинамических моделей специально не рассматривались. Так, анализ равновесий начинался с решения уже сформулированной, термодинамически поставленной задачи, когда звестны термодинамические пере-  [c.165]

Долгое время считалось, что для нелинейных систем требуется применение законов неравновесной термодинамики. Г.П. Гладышев [2] развил подходы макротермодинамики, позволяющие использовать законы классической термодинамики для открытых систем путем введения принципа локального равновесия. В соответствии с этим принципом любая открытая система может быть представлена как квазизакрытая, в которой открытые подсистемы поме-uieHbi в термостат. Это позволяет для описания сложных систем применить уравнения классической термодинамики, используя представления о средней удельной энергии Гиббса (энергия Гиббса, отнесенная к локальному объему).  [c.3]


Однако мысленный эксперимент Сциларда не может служить основанием для каких-либо выводов. Дело в том, что использование одномолекулярного газа допустимо, пока процессы с ним не противоречат газовым законам. Но в момент введения поршня в цилиндр газ сжимается до половины своего объема без затраты работы, что является недопустимой идеализацией мысленного эксперимента Сциларда, вследствие чего этот эксперимент не может использоваться для проверки второго начала термодинамики.  [c.166]

По той же причине эксперимент Сциларда не может служить основанием для отождествления физической энтропии, используемой в термодинамике, с информационной энтропией, введенной Шенноном. В эксперименте Сциларда вообще не требуется никакой предварительной информации о местонахождении молекулы после введения в цилиндр поршня, поскольку само движение поршня указывает на ее местонахождение и превращение теплоты в работу будет происходить независимо от того, где находится молекула.  [c.166]

Химическая термодинамика занимается изучением химических процессов с термодинамической точки зрения и в отличие от технической рассматривает явления, в которых происходят знутрп-молекулярные изменения рабочего тела при сохранении гтомами молекул своей индивидуальности. Образование новых веществ (рабочего тела) или разложение веществ осуществляется в результате химической реакции. Для химического процесса характерно изменение числа и расположения атомов в молекуле реагирующих веществ. В ходе реакции разрушаются старые и возникают новые связи между атомами. В результате действия сил связей шэоисхо-дит выделение или поглощение энергии. Энергия, которая может проявляться только в результате химической реакции, называется химической энергией. Химическая энергия представляет собой часть внутренней энергии системы, рассматриваемой в момент химического превращения, ибо в запас внутренней энергии входит не только кинетическая и потенциальная энергия молекул, но и ншергия электронов, энергия, содержащаяся в атомных ядрах, лучистая энергия. Отличительным признаком химической реакции является изменение состава системы в результате перераспределения массы между реагирующими веществами в изолированной системе. Если же система не изолирована от окружающей среды, то свойства ее должны зависеть также от количества вещества, введенного в систему или выведенного из нее. Если, например, в калориметрическую бомбу поместить смесь из двух объемов водорода и одного объема кислорода (гремучий газ), то, несмотря на отсутствие теплообмена, происходит реакция с образованием водяного пара  [c.191]

ЕЗ связи с введением понятия о вечноги двигателе второго рода второе начало термодинамики можно сформулировать еще и так  [c.45]

Планк использовал понятие о вечном двигателе второго рода, введенное Оствальдом, для формулировки второго начала термодинамики в следующем виде невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к поднятию некоторого груза и соответствующему охлаждению теплового резервуара (эту формулировку называют иногда формулировкой Тсмсона—Планка, поскольку понятие о вечном двигателе второго рода в упомянутом смысле имелось уже у Томсона).  [c.154]

Активность, так же как и химический потенциал, позволяет охарактеризовать термодинамические свойства вещества. Активность, как мы уже отмечали, является функцией концентрации, температуры и давления. Метод активности в термодинамике является формальным приемом и заключается во введении новой функции состояния, которая упрощает вид термодинамических соотношений в теории растворов. Можно, конечно, вместо RTlnOi пользоваться разностью (if—Но практика показывает, что это приводит к более громоздким математическим выражениям.  [c.23]

Можно убедиться в том, что из второго закона термодинамики следует необходимость существования еще о 1ной функции состояния, называемой энтропией. Заметим, что существует возможность введения термодинамических функций состояния путем использования некоторых принципов недостижимости. Например, из утверждения, что вблизи каждого состояния равновесной системы существуют состояния, недостижимые изобарным путем, следует сугщст-вование у каждой равновесной системы давления р.  [c.40]

Показанное в предыдущем параграфе исследование процессов изменения состояния газа оказывается недостаточным для изучения процессов превращения тепловой энергии в механическую в тепловых двигателях. Для этого необходимо ввести еще одну характеристику (параметр) состояния газа. Однако предварительно нужно обратить внимание на одну особенность, касающуюся введенных параметров состояния. Из них четыре—давление, удельный объем (плотность), температура и внутренняя энергия — имеют простой физический смысл, легко объясняемый поведением громадного количества хаотически движущихся молекул, из которых состоят тела. Благодаря этому эти четыре параметра легко воспринимаются oprsi-нами чувств человека и легко усваиваются при изучении. Кроме этих четырех параметров в термодинамике используется ряд таких параметров состояния, которые не обладают отмеченным выше свойством. Они вводятся чисто математическим путем и служат для облегчения технических расчетов. К числу таких параметров, как видно было, относится пятый из введенных параметров — энтальпия. Он не имеет какого-либо физического смысла и используется для вычисления ряда технически важных величин к, в частности, количества теила в одном из важнейших процессов изменения состояния газов — изобарном. Для каждого состояния газа он вычисляется по формуле (2-27 i.  [c.81]


Смотреть страницы где упоминается термин Л е о н т о в и ч, Введение в термодинамику : [c.56]    [c.164]    [c.18]    [c.46]    [c.189]    [c.2]    [c.485]    [c.95]    [c.241]    [c.66]    [c.240]   
Смотреть главы в:

Термодинамика и история её развития  -> Л е о н т о в и ч, Введение в термодинамику



ПОИСК



ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ Основные понятия и положения термодинамики

ВВЕДЕНИЕ В ТЕРМОДПНАМИКУ Основные понятия и положения термодинамики

Введение

Введение в неравновесную термодинамику Глава тринадцатая Исходные положения неравновесной термодинамики Локальное равновесие и основное уравнение термодинамики неравновесных процессов

Введение, техническая и химическая термодинамика

Глава четырнадцатая. Введение в химическую термодинамику

Предисловие автора к Введению в термодинамику

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте