Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методика проведения усталостных испытаний

Созданы методики и оборудование для усталостных испытаний высокомодульных материалов. Расчеты на прочность при переменных нагрузках как по коэффициентам запаса прочности, так и при помощи вероятностных методов расчета требуют знания характеристик сопротивления усталости материала. Для этого разработаны оборудование и методики проведения усталостных испытаний композитов при растяжении, изгибе, межслойном сдвиге и смятии в мало- и многоцикловой областях. Установлено, в частности, что современные углепластики обладают высоким сопротивлением усталости по сравнению с металлическими материалами, что позволяет эффективно применять их при значительных амплитудах переменных нагрузок. Были выявлены статистические закономерности подобия усталостного разрушения углепластиков и разработаны предпосылки создания инженерной методики оценки усталостной долговечности элементов конструкций из углепластиков.  [c.17]


МЕТОДИКА ПРОВЕДЕНИЯ УСТАЛОСТНЫХ ИСПЫТАНИИ  [c.276]

Ускорение усталостных испытаний имеет большое значение для прогресса в развитии техники. Снижение затрат времени, материалов и труда при проведении усталостных испытаний можно достигнуть без изменения принятых методов испытаний или путем изменения методики. В особенности большое значение имеет ускоренная оценка усталостной прочности натурных деталей. Ускоренные испытания на ограниченном количестве образцов или конструкций могут обеспечить оперативную оценку принятых технологических или конструктивных изменений.  [c.73]

Наиболее подробное изложение теоретических аспектов разрушения, подготовки образцов и оборудования, порядка проведения исследований дается здесь для методик, составляющих группы Усталостные испытания и Испытания на трещиностойкость . Это вызвано почти полным отсутствием в литературе данных об оценке надежности и долговечности на образцах с покрытиями. Следует отметить, что методы усталостных испытаний и на трещиностойкость металлических образцов регламентированы нормативными документами (ГОСТы и РД), поэтому нам представляется целесообразным использование этих документов при подготовке контрольных образцов. Кроме того, при изготовлении образцов с покрытием следует, вероятно, соблюдать принцип покрытие должно наноситься на выбранные поверхности металлических образцов, сделанных строго в соответствии с действующим стандартом. Это позволит однозначно оценить влияние покрытия на конструктивную прочность и обеспечить сопоставимость результатов.  [c.20]

К настоящему времени разработано много методов усталостных испытаний для получения разнообразной информации, соответствующей различным целям исследований. Например, могут потребоваться данные о распределении долговечности при постоянной амплитуде напряжения, данные о распределении усталостной прочности при заданном уровне долговечности, может возникнуть необходимость получения большого объема данных при наименьшем возможном размере выборок образцов или в возможно кратчайшие сроки и т. д. В последующих разделах описаны некоторые методы усталостных испытаний, иллюстрирующие способы достижения различных целей исследований. Отметим, что рассмотренные методы анализа применимы к различным данным лабораторных и натурных испытаний независимо от типа используемых испытательных машин и способов испытаний. Вопросы, связанные с испытательным оборудованием и методиками проведения испытаний, достаточно подробно освещены в литературе (см., например, [9]).  [c.357]


Испытания реальных нижних обвязочных брусьев с сечениями, использованными при отработке конструкции, могут проводиться на начальном этапе проектирования по методике, которая применяется при проведении усталостных испытаиий идеализированных конструкции.  [c.134]

МЕТОДИКА ПРОВЕДЕНИЯ КОРРОЗИОННО-УСТАЛОСТНЫХ ИСПЫТАНИЙ В УСЛОВИЯХ АТМОСФЕРНОЙ КОРРОЗИИ  [c.6]

Существует несколько разновидностей испытаний материалов на динамическую трещиностойкость (вязкость) разрушения. Одна из них реализуется на маятниковом копре. При разрушении образца с предварительно наведенной усталостной трещиной записываются осциллограммы нагрузка — время или нагрузка — деформация . Для проведения эксперимента с помощью этого метода необходимо использовать осциллограф, позволяющий фиксировать быстропротекающие процессы. Нагрузка, приложенная к образцу, фиксируется тензодатчиками, расположенными на опорах копра, на образце или на ноже маятника. Недостатком методики динамической трещиностойкости является то, что из-за малой жесткости системы нож маятника — образец — опора появляется ошибка, связанная с инерционностью системы [244].  [c.147]

Для оценки влияния величины концентратора напряжений на эффективность поверхностного наклепа были проведены испытания на усталость образцов из стали 45 диаметром 26 мм гладких и с концентратором напряжений глубиной 4 мм, радиусом при вершине 0,2 мм и углом при вершине 60°. Каждый образец имел по четыре надреза, расположенных на расстоянии 15 мм один от другого, что позволило применить методику исследования трещин, развивающихся в концентраторах, работающих на различных уровнях переменных напряжений. Результаты испытаний, проведенных на базе Ю циклов, приведены на рис. 63. Исходные гладкие образцы имели предел выносливости 225 МПа (кривая /). Кривые 2 и 3, соответствующие возникновению трещины и разрушению надрезанных образцов, показывают, что выбранный для исследований концентратор напряжений (а(т = 4), является закритическим, т. е. обусловливает возникновение в нем нераспространяющихся усталостных трещин. Поверхностный наклеп приводит к резкому (более чем в  [c.154]

Испытания на водородное охрупчивание обычно проводят с целью исследования какого-либо одного из двух типов поведения. Поведение I типа связано с кратковременными или мгновенными процессами, когда проникновение водорода в металл посредством диффузии невелико или отсутствует. Такие процессы исследуют с помощью испытаний на растяжение или методами механики разрушения при высоком или низком давлении газа. Поведение II типа характерно для тех случаев, когда водород попадает в решетку металла, что может произойти, например, при длительной эксплуатации конструкции в водородсодержащей среде. Такие условия моделируются путем проведения испытаний на образцах, предварительно наводороженных до перенасыщения в газовой фазе или электролитически. Используемые методики могут включать растяжение, разрушение, выращивание усталостных трещин или рост трещин при постоянной нагрузке.  [c.49]

Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизотропность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики.  [c.32]

База испытаний и методика обработки результатов эксперимента. База испытаний принята в 2-10 циклов. Испытания, проведенные на базе 5-10 и 10-10 циклов показали [И], что при эффективных коэффициентах концентрации напряжений k <[ 2,0 (сварные листовые конструкции и клепаные конструкции) предел выносливости определяется на базе Nq = 2-10 а при 2,0 (сварные решетчатые конструкции) на базе 5-10 , причем закон изменения кривой усталости на участке от 2-10 до 5-10 циклов сохраняется прежним. Тем самым для соединений с величиной k 2s 2,0 возможно проведение испытаний на базе N 2 -10 циклов с последуюш,ей экстраполяцией кривых до значений Nq 5 -10 циклов. Это важно, так как проведение испытаний на базе iVg = 5-10 циклов сильно их удлиняет. Что касается результатов испытаний на базе = 10-10 циклов, то никаких уточнений значений пределов выносливости они не внесли. Определение пределов выносливости производилось путем построения усталостных кривых с числом разрушенных образцов в серии не менее шести, причем, как  [c.149]


Механические испытания разделяют на три вида статические, когда нагрузка на испытываемый образец возрастает плавно динамические, когда нагрузка прилагается мгновенно, ударом и усталостные, когда к испытываемому образцу прилагают переменные по величине или по направлению усилия (циклическая нагрузка). Испытания производят на стандартных образцах, которые вырезают непосредственно из контролируемой сварной конструкции или из специально сваренных в таких же условиях контрольных образцов. Виды испытаний, методика их проведения, форма образцов определены государственными стандартами. В результате испытаний определяют предел прочности, относительное удлинение, угол загиба, ударную вязкость, твердость, усталостную прочность и другие показатели механических свойств металла сварного соединения. Некоторые ответственные сварные конструкции испытывают на конструктивную прочность, прилагая к ним нагрузки, превышающие эксплуатационные, и определяя, при какой нагрузке конструкция разрушается. Например, сварные емкости разрушают внутренним давлением жидкости - производят гидроиспытания. По результатам таких испытаний одного-двух изделий судят о необходимости доработки конструкции или технологий ее изготовления.  [c.36]

Образцы из стали 40Х были изготовлены из прутка диаметрами 20 и 32 мм. Первоначально были изготовлены образцы из этих прутков диаметром соответственно Do = 16 мм и Dq — 21 мм с кольцевыми концентраторами и образованы усталостные трещины (рис. 50, а) по указанной методике (см. параграф 2 данной главы). Затем, удалив слой материала с образца на глубину первоначального концентратора до диаметра образцы подвергали закалке при температуре 850° С в масле и отпуску при температурах 300 и 400° С. После шлифовки образца и дополнительного продвижения трещины уже в термически обработанном материале получали готовые цилиндрические образцы с кольцевыми трещинами для проведения испытаний (рис. 50, б).  [c.143]

Анализ экспериментальных данных показывает, что при проведении испытаний на усталость по методике ступенчатых нагружений могут быть Найдены сочетания чередующихся низких и высоких циклических напряжений, не оказывающих взаимного влияния на скорость роста усталостной трещины. Этот вывод в дальнейшем будет подтвержден экспериментальными данными.  [c.229]

ГО испытательного оборудования и стендов для натурных испытаний. Оборудование для проведения малоцикловых усталостных испытаний, ударно-усталостных, коррозионно-усталостных, термо-усталост-ных и контактно-усталостных рассмотрено в соответствующих главах по методике проведения этих испытаний.  [c.160]

Для решения указанной задачи необходимо проведение усталостных испытаний образцов нескольких типоразмеров с различными значениями критерия подобия -4-. Методика будет проиллю-  [c.100]

При проведении усталостных испытаний очень важно обеспечить тщательный контроль условий и методики испытания. Даже в условиях единсюбразия и тщательного проведения испытаний желательно испытывать в одних и тех же условиях несколько образцов для возможности получения надежных средних данных усталостного испытания. Существует точка зрения [1], что для оценки предела выносливости и построения кривой усталости яри каждом из вариантов условий испытания необходимо не менее 10 образцов. Однако ввиду высокой стоимости проведения усталостных испытаний образцов конструкций больших размеров обычно испытывают в одинаковых условиях только 3—4 образца .  [c.28]

Значительные различия в методике проведения экспериментов, применяемом оборудовании и воспроизводимых формах циклов при исследовании усталостных характеристик материалов в условиях действия бигармонических напряжений затрудняют сопоставление результатов испытаний. Можно полагать, что в результате дальнейших исследований будет создано необходимое испытательное оборудование и на основе усталостных испытаний материалов при бигармонйческом нагружении разработаны методы расчета деталей и конструкций, подвергающихся действию полигармонических нагрузок.  [c.127]

Существуют различные методики расчета сварных соединений на циклическую прочность. Ниже рассмотрена методика, изложенная в [29 30] и базирующаяся на результатах усталостных испытаний сварных деталей реальных размеров, проведенных для различных сталей с разнообразными необработанными механическим путем бездефектными швами. На базе 2 10 циклов нагружений получены значения пределов выносливости симметричного сг 1д и отнулевого Оод режимов. По этим двум точкам в координатах (а ах — максимальное, — среднее  [c.94]

В ГОСТ 25.502—79 предусмотрена также в случае необходимости методика проведения испытаний достаточно большого числа образцов с последующей вероятностной трактовке результатов испытаний. Вероятност пая трактовка характеристик сопротивления усталости и построение полных вероятностных диаграмм усталости связано со значительным рассеянием таких характеристик, как усталостная долговечность N при заданной амплитуде Оа или предел ограниченной выносливости а.щ, соответствующий заданному числу циклов N. Так, например, значение отношения наибольшей долговечности к наименьшей в выборке из 20—40 одинаковых образцов из одной плавкн высокопрочной стали, испытанные при одной и той же амплитуде напряжений в совершенно идентичных условия .  [c.139]

Насколько удалось ознакомиться, как в отечественной, так п в зарубежний литературе отсутствуют сведения о выносливости алюминиевых соединений с заклепками большого диаметра (16 — 24 мм). Имеющиеся данные касаются в основном выносливости малых образцов из различных алюминиевых сплавов. Это ра(боты, проведенные в ВИАМе [1], ЛИСИ [2] и МАТИ [3], [4]. Последние обширные исследования выполнены группой сотрудников под руководством проф. С. В. Серенсена и посвящены изучению усталостной прочности алюминиевых сплавов В95 и Д16 в зависимости от технологии их производства и изготовления деталей. Большое место отводится методике постано)вки испытаний )И способам обработки их результатов на основе современных статистических представлений.  [c.212]


Испытания проводились в двух коррозионных средах 1) на воздухе (с отБосптельной влажностью 5б /о) и 2) в атмосфере влажного воздуха (с относительной влажностью, близкой к 100%), содержащего 0,27% SO2. Методика проведения коррозионно-усталостных, испытаний в этих средах подробно описана в работе, проведенной авторами по установлению влияния атмосферной коррозии на усталостную прочность конструкционной стали [7].  [c.15]

Циклические испытания с целью определения сопротивления росту трещины в однородном металле регламентйрованы метохическими указаниями РД 50-345-82 [194], где даны рекомендации по конструкции образцов, их изготовлению, необходимому испытательному оборудованию, методике проведения и обработке результатов испытаний с определением коэффициентов 1С и п уравнения, характеризующего средний участок диаграммы усталостного разрушения, а также значения порогового коэффициента интенсивности нагфяжений при отнуле-вом пульсирующем цикле нагружения. Хотя основные положения этого документа вполне применимы и в случае определения сопротивления росту трещин в различных зонах стыковых соединений, имеются определенные особенности, требующие дополнительных пояснений.  [c.175]

Таким образом, разработанная методика проведения испытаний и обработки данных эксперимента позволяет исследовать процессы накопления усталостных повреждений при сложном программном нагруженирг. Ее применение для исследования процессов накопления повреждений в условиях стресс-коррозии позволит определить критерии образования трещин при нагружении, характерном для эксплуатации, с учетом повреждаемости от коррозионного воздействия различных грунтов.  [c.246]

Сопротивление некоторого конструкционного материала мно-гоцикловому усталостному разрушению оценивают по кривой усталости, которая строится в координатах Отах — N при данном коэффициенте асимметрии цикла R, иногда также в координатах Ста — N. Числа циклов N наносятся в логарифмическом, а напряжения — в логарифмическом или натуральном масштабе (рис. 1.12). Заштрихованы области 95 % доверительной вероятности для средних значений долговечности. Кривая для = 0,1 нанесена по расчету согласно (1.7а). Аппаратура, на которой проводятся многоцикловые испытания на усталость, а также методика их проведения описаны, например, в работах [103, 88). Эти испытания проводятся, как правило, в условиях мягкого нагружения  [c.19]

Применяемый метод неразрушающего контроля с помощью ультразвука должен обеспечивать в процессе производства обнаружение дефекта такого размера, который в дальнейшем может привести к разрушению корпуса. При правильном проведении 100%-ного контроля есть возможность установить местонахождение и определить размеры трещин, как начинающихся на поверхности, так и находящихся в толще материала. При условии, что контроль проведен тщательно, на поверхности корпуса могут быть обнаружены трещины глубиной <0,6 см. Труднее осуществлять контроль, если поверхность защищена покрытием. Так, прохождение ультразвука через аустенитные стали не дает четкой картины. поверхности раздела между покрытием и металлом корпуса, в результате чего дефекты могут оказаться замаскированными или может сложиться ложное представление о них. Однако с достаточной определенностью можно установить дефект протяженностью 1,2 см, так как он будет заметен на экране прибора. Все корпуса реакторов перед сдачей в эксплуатацию испытывают гидравлической опрессовкой давлением, равным 50% рабочего давления, при комнатной температуре. Этот вид испытания помогает выявить более мелкие дефекты, которые могут привести к разрушению корпуса при рабочих температуре и давлении. Используя результаты таких испытаний, можно рассчитать число рабочих циклов, которым корпус должен противостоять в процессе работы, при условии, что напряжения, возникающие при подаче давления, доминируют, а всеми другими источниками можно пренебречь. Чтобы гарантировать надежность работы корпуса до конца срока службы, испытание можно повторить в процессе эксплуатации. Однако следует помнить, что каждое испытание давлением таким способом использует заметную часть запаса усталостной прочности корпуса. Из сказанного ясно, что если корпус тщательно изготовлен из требуемого материала и контролем не выявлены дефекты, которые могли бы вызвать его разрушение, он должен обеспечить надежную работу реактора. Для большей гарантии было предложено проверять корпуса в процессе эксплуатации, вводя с внутренней стороны автоматические ультразвуковые и сканирующие датчики, которые обеспечивают просмотр всех критических участков корпуса. Кроме того, было предложено использовать методику регистрации перепадов напряжения как средство обнаружения распространения трещин, однако до сих пор положительных результатов получено не было.  [c.169]

Расчет часто невозможен без проведения испытаний на усталость, чрезвычайно длительных для того, чтобы воспроизвести температурный цикл и выдержать время, необходимое для имитации двухсменного режима эксплуатации турбины. Используемые сейчас методики основаны на экстраполяции, которая вноси" некоторую неопределенность. Ранее фиксировались только вызванные термоциклированием систематические усталостные разрушения в турбинах с конструкцией пароввода, которая вызывала концентрацию напряжений из-за резкого температурного перепада, возникающего в момент попадания в турбину горячего пара. Эти турбины работали при температуре 510° С и давлении пара 65 бар и во всех случаях корпуса растрескивались примерно после 8000 циклов. После этого турбина была реконструирована, чтобы уменьшить интенсивность напряжений и защитить зону па-роввода, но даже в первоначальной конструкции при работе в установившемся режиме разрушений не наблюдалось. Однако, есть многочисленные примеры образования трещин, причем некоторые из них распространялись через всю стенку корпуса.  [c.205]

Таким образом, для точной оценки накопленного усталостного повреждения следует использовать параметры фактической кривой усталости, полученной с учетом температурных и временных особенностей (в частности, деформационного старения). Важен также правильный выбор значений располагаемой пластичности (деформационной способности) материала. Оптимальным является проведение экспериментов на материале одной плавки с сохранением основных методических подходов (типа испытания, типа образца, способа нагрева, методики измерения нагрузок и температур, точности аппаратуры). При этом для случаев де юрмационного старения точность вычисления повреждений существенно зависит от учета или неуче-та изменения во времени располагаемой пластичности конструкционного материала.  [c.104]


Смотреть страницы где упоминается термин Методика проведения усталостных испытаний : [c.100]    [c.41]   
Смотреть главы в:

Механические испытания и свойства металлов  -> Методика проведения усталостных испытаний



ПОИСК



Испытание усталостное

Методика испытаний

Проведение испытаний

Усталостная



© 2025 Mash-xxl.info Реклама на сайте