Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Сравнение с низколегированной сталью

В конструкциях действующих ядерных кипящих реакторов широко применяются никелевые сплавы инконель-бОО и Х-750. По сравнению с аустенитными сталями эти сплавы обладают повышенными прочностными свойствами и имеют коэффициент линейного расширения более близкий к углеродистым и низколегированным сталям. Это позволяет исполь-40  [c.40]

Положительные свойства углеродистой стали — достаточно высокие механические и технологические свойства, а также относительная дешевизна по сравнению с легированной сталью (дешевле низколегированной в 2—3 раза и высоколегированной в 20—25 раз) — определяют их широкое применение в котло-строении для котлов среднего и повышенного давления применяется, как правило, только углеродистая сталь. В котлах высокого давления (р= 100 ати, tne=b ) вес элементов, выполняемых из углеродистой стали, достигает 60—80%.  [c.17]


Для строительных конструкций могут быть применены как углеродистые, так и низколегированные стали (см. раздел 6.2.). Низколегированные стали обеспечивают повышение предела текучести приблизительно в 1,5 раза по сравнению с углеродистыми. Благодаря этому масса конструкций снижается на 20-50 %. При этом себестоимость проката из низколегированных сталей на 15-20 % выше, чем из углеродистых. Отсюда видно, что себестоимость низколегированных сталей возрастает в меньшей степени, чем достигается экономия из-за увеличения прочности. Но не только этим обусловлена эффективность применения низколегированных сталей. В отличие от углеродистых сталей, они не склонны к хрупким разрушениям при температуре ниже -40°С. Это обеспечивает высокую надежность и долговечность конструкций. Таким образом, применение низколегированных строительных сталей экономически выгодно.  [c.398]

В состав низколегированных сталей входят малые добавки таких элементов, как медь, хром, никель, молибден, кремний и марганец, за счет чего и достигается повышение прочности по сравнению с углеродистой сталью. Коммерческой характеристикой низколегированных сталей является не строгий химический состав, а их прочностные свойства. Суммарное содержание легирующих добавок обычно составляет около  [c.42]

Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условиям постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода.  [c.444]


По сравнению с углеродистыми сталями низколегированные стали имеют более высокие эксплуатационные свойства.  [c.227]

Низколегированная сталь обладает по сравнению с углеродистой сталью повышенной прочностью, пониженной склонностью к старению, повышенной хладно-прочностью, хорошей свариваемостью, повышенной износостойкостью и коррозионной стойкостью в различных газовоздушных средах, морской воде и др.  [c.291]

Сварные соединения углеродистых и низколегированных конструкционных сталей, работающих под ударной нагрузкой. Ударная вязкость сварных соединений углеродистых и низколегированных конструкционных сталей при любом высококачественном методе сварки (ручном с толстопокрытыми электродами, автоматическом под слоем флюса, контактном с оплавлением) понижается по сравнению с ударной вязкостью основного металла, ио при отлаженном технологическом процессе  [c.853]

В настоящее время тракт первичной воды выполняют обычно из хромоникелевых нержавеющих сталей аустенитного класса. Узлы теплообменных аппаратов, не омываемые первичной водой, изготовляют из углеродистых и низколегированных сталей, имеющих по сравнению с нержавеющими следующие недостатки  [c.283]

В низко- и среднелегированных сталях легирующие элементы вводят в основном для упрочнения. Хром и молибден способствуют некоторому повышению коррозионной стойкости стали в котловой воде и насыщенном паре. Упрочнение достигается в основном вследствие повышения склонности легированных сталей к прокаливаемости, упрочнения феррита и образования мелкодисперсных карбидов. Одновременно несколько ухудшаются пластические свойства и свариваемость. Сварку листов больших толщин из низколегированных сталей приходится проводить с предварительным и сопутствующим подогревом после сварки во избежание образования трещин становится необходимым высокий отпуск это усложняет технологический процесс и увеличивает трудоемкость изготовления. Однако снижается металлоемкость, так как вследствие более высокой прочности легированных сталей растут допускаемые напряжения. Многие низколегированные стали имеют заметно более низкую температуру перехода в хрупкое состояние по сравнению с углеродистыми.  [c.107]

По сравнению с углеродистыми низколегированные стали обладают повышенной прочностью, пониженной чувствительностью к старению, хорошей свариваемостью, легко поддаются механической обработке и штамповке.  [c.18]

По сравнению с облицовкой наплавка поверхностей деталей, изготовленных из углеродистых и низколегированных сталей, износостойкими сплавами обеспечивает более надежную защиту их от кавитационно-эрозионного разрушения. В настоящее время имеются данные о кавитационной стойкости деталей проточного тракта гидротурбин, наплавленных различными сталями.  [c.48]

Применяемые в теплоэнергетике перлитные, ферритные и аустенитные стали при температуре до 500° С обладают очень высоким сопротивлением развитию трещин термической усталости, Низколегированные конструкционные и теплоустойчивые стали имеют определенное преимущество по сравнению с углеродистыми. Это согласуется с отмеченными выше закономерностями и подтверждает тенденцию увеличения сопротивления термической усталости перлитных сталей с повышением их жаропрочности. Достаточно высокое сопротивление росту трещин термической усталости аустенитных сталей можно объяснить их высокой пластичностью и незначительным коррозионным воздействием окружающей среды при температурах до 500° С.  [c.144]

Анализ свойств сварных соединений из углеродистых и низколегированных сталей, выполненных сваркой плавлением, показал неоднородность структуры и свойств по зонам сварного соединения. В ЗТВ возникают нежелательные крупнозернистые структуры, высокие остаточные макро- и микронапряжения. Последствием структурных изменений является снижение механических и эксплуатационных свойств сварных соединений. Остаточные напряжения могут стать причинами возникновения трещин, снижают сопротивляемость хрупким разрушениям, способствуют ускорению коррозионных процессов по сравнению с основным металлом.  [c.6]


Легирующие элементы, растворяясь в феррите, уменьшая размер зерна и увеличивая склонность аустенита к переохлаждению, способствуют измельчению карбидной фазы, поэтому низколегированные стали по сравнению с углеродистыми сталями обыкновенного качества (Ст2, СтЗ, Ст4) имеют более высокие значения временного сопротивления и предела текучести при сохранении хорошей пластичности, меньшей склонности к старению и хрупким разрушениям (низкий порог хладноломкости). Ударная вязкость (КСи) этих сталей, при 20 °С составляет около 0,6 МДж/м , при — 40 °С — 0,3—0,35 МДж/м и при — 70 С — 0,25—0,3 мДж/м .  [c.262]

Легированные стали повышенной прокаливаемости, не обладающие теплостойкостью (ГОСТ 5950—73). Легированные инструментальные стали (табл. 26) подобно углеродистым не обладают теплостойкостью и пригодны только для резания материалов невысокой прочности (сГв = 500-4-600 МПа) с небольшой скоростью (до 5—8 м/мин). Их используют для инструмента, не подвергаемого в работе нагреву свыше 200—250 °С. Легированные стали по сравнению с углеродистыми обладают большой устойчивостью переохлажденного аустенита, а следовательно, большей прокали-ваемостью. Инструменты из этих сталей можно охлаждать при закалке в масле и горячих средах (ступенчатая закалка), что уменьшает деформацию и коробление инструмента. Низколегированные стали ИХФ и 13Х рекомендованы для инструментов диаметром до 5 мм, закаливаемых в масле или горячих средах для уменьшения деформации по сравнению с получаемой в углеродистых сталях, закаливаемых в воде. Ванадий тормозит рост зерна при нагреве под закалку.  [c.351]

Низколегированные стали по сравнению с углеродистыми более чувствительны к сварочному нагреву. Они склонны к образованию закалочных структур, перегреву, разупрочнению. При сварке этих сталей, особенно больших толщин, рекомендуется предварительный подогрев и последующая термическая обработка, в том числе высокотемпературный отпуск.  [c.508]

Низколегированные инструментальные стали содержат в сумме около 1-3 % легирующих элементов. Они обладают повышенной по сравнению с углеродистыми сталями прокаливаемостью, но теплостойкость их невелика — до 300 °С. Основные легирующие элементы — хром, кремний, вольфрам, ванадий. Маркируются эти стали так же, как конструкционные, но содержание углерода дается в десятых долях процента. Если первая цифра в марке отсутствует, то содержание углерода превышает 1 %. Например 9ХС, ХВГ, ХВ5.  [c.189]

Из приведенных в табл. 34 объектов аналитического контроля наиболее представительны чугуны, углеродистые и низколегированные стали. Минимальная по сравнению с другими материалами доля бракованных результатов в этой группе — следствие не только относительной простоты химического анализа массовых видов металлопродукции, но и исключительно высокой квалификации контролирующих черные металлы лабораторий крупнейших металлургических комбинатов и заводов, имеющих к тому же многолетний опыт аттестации государственных СО. Заметно выше уровень брака при разработке СО состава легированных и высоколегированных сталей, а также сплавов на никелевой основе. Это, по-видимому, закономерно вследствие большого количества вновь разрабатываемых и внедряемых методик выполнения измерений и сложности анализа. Сказанное можно отнести и к результатам научно-исследовательских организаций, вносящих заметный вклад > 12 %) в общий объем аттестационного анализа СО, однако качество работы аналитических подразделений отдельных институтов не полностью соответствует стоящим перед ними-задачам  [c.197]

Таким образом, мартенситностареющая сталь Н18К9М5Т в сравнении с, низколегированными углеродистыми сталями экви-98  [c.98]

Высокое сопротивление коррозионной усталости стали 55 можно объяснить тем, что помимо присущих ей высоких усталостных свойств она в своем составе содержит хром и никель в количествах, позволяющих считать ее низколегированной сталью. Низколегированные стали, как показали работы других исследователей, имеют более высокие показатели выносливости, чем углеродистые стали [3]. Несколько пониженная выносливость в водопроводной воде у стали 60 по сравнению с предыдущей сталью, по-видимому, можно объяснить ее пониженными показателями сопротивления усталости. Проволока из сталей 50Г, 50ГС и 50 Т1, хотя и имеет в своем составе легирующие элементы, но наряду с ними эти стали имеют либо очень высокое  [c.219]

При испытаниях при постоянной нагрузке (в жидкой фазе) обнаружено быстрое растрескивание (после выдержки не более 100 ч) ряда низколегированных сталей (например, 09Г2С и 18Гпс) даже при сравнительно невысоких напряжениях в металле порядка 60—807о <7о,2- Углеродистые стали показали несколько более высокую стойкость к сероводородному растрескиванию по сравнению с низколегированными.  [c.71]

Большинство стальных конструкций, эксплуатируемых в атмосфере, покрыто ка-кими-либо защитными покрытиями. Если целостность такого покрытия постоянно поддерживается и ржавчина на стали не появляется, то, с точки зрения коррозии, нет никакого смысла использовать низколегированную сталь вместо обычной малоуглеродистой. Если же, наоборот, возможно повреждение защитного покрытия, то следует предусмотреть использование низколегированной стали. Более плотная пленка ржавчины, образующаяся на этих сталях, в меньшей степени вызывает отслаивание покрытия по соседству с прокорродировавшим участком, и скорость разрушения покрытия уменьшается. Некоторые исследователи сообщали о более высоком качестве и долговечности лакокрасочных покрытий на низколегированных сталях по сравнению с обычными сталями. Например, Копсон и Ларраби писали [24] Как полевые испытания, так и опыт эксплуатации показали, что лакокрасочные покрытия на высокопрочной низколегированной стали более надежны, чем на углеродистой или на медистой стали. Ржавчина, возникающая на повреждениях, в местах отсутствия покрытия или под лакокрасочной пленкой, у низколегированных сталей менее объемна. Благодаря меньшему объему ржавчины происходит меньшее растрескивание лакокрасочной пленки и, следовательно, на сталь попадает меньшее количество влаги, способствующей дальнейшей коррозии. В соответствии со сказанным, низколегированные стали можно с успехом использовать для таких целей, как сельскохозяйственное машиностроение. Покрытие на таких машинах нередко повреждается, и, кроме того, машины часто и подолгу остаются в поле под открытым небом.  [c.21]


Низколегированная сталь по сравнению с обычной углеродистой сталью обладает более высокой прочностью. Отношение предела текучести к пределу прочности для низколегированной стали обычно равно 0,65—0,75, а для углеродистой стали обыкновенного качества —0,55 —0,60. Пластичность низколегированной стали достаточно высокая для толщин 8—20 мм 6s 21 % н if 50 % ударная вязкость ее при +20°С составляет более 6-10 Дж/м , при —40°С не менее (3—5)-10 Дж/м , после механического старения —не менее 3-10 Дж/м . Низколегированная сталь обладает меньшей чувствительностью к старению и меньшей склонностью к хладоломкости, хорошо сваривается.  [c.27]

Коррозионная стойкость в атмосферных условиях и других средах в 1,5 раза выше по сравнению с углеродистой сталью марки ВСтЗ. Применение низколегированной стали вместо углеродистой обыкновенного качества позволяет уменьшить массу конструкции на 20%. Химический состав некоторых марок низколегированной стали представлены в табл. 14,  [c.27]

Из стали производят около 21 % всех отливок по массе. По химическому составу стали делятся на углеродистые и легированные. Последние в зависимости от количества легирующих элементов делятся на низколегированные (до 2,5 %), среднелегированные (от 2,5 до 10%) и высоколегированные (свыше 10%). Литейные стали 15Л, 20Л, 45Л, 10Х18Н9ТЛ, 110Г13Л обладают пониженной жидкотекучестью и большой усадкой. В связи с этим расход металла на отливку увеличивается примерно в 1,6 раза по сравнению с чугунной. Литье из цветных сплавов составляет по массе примерно 4 % в общем объеме литейного производства.  [c.48]

Еще одним важным критерием для сравнения влияния облучения на углеродистые к низколегированные стали является температура перехода материала из пластичного состояния в хрупкое. Эта температура для необлученпых котельных сталей лежит ниже 0° С. Многие экспериментаторы исследовали образцы различной геометрии с надрезом, облученные в различных условиях. У большинства образцов чувствительность к надрезу увеличивалась в результате облучения быстрыми нейтронами.  [c.242]

Структура нелегированного и низколегированного белого чугуна состоит из перлитной матрицы и карбидов типа РезС или (Fe, Сг)зС. Такой чугун имеет высокую твердость, не поддается при обычных режимах механической обработке и обладает повышенной хрупкостью. Износостойкость чугуна доэвтектического состава (2,8—3,5% С) лишь на 50—80% выше по сравнению с углеродистыми сталями. Большая склонность белого чугуна и отдельных его структурных составляющих (особенно цементита) к хрупкому разрушению часто является причиной снижения сопротивления абразивному изнашиванию в условиях работы с ударом.  [c.50]

В таких условиях продукты коррозии остаются на металле и при хорошей адгезии замедляют процесс разрушения во времени. Скорчелетти показал, что продукты атмосферной коррозии, возникающие на низколегированных и высокоуглеродистых сталях, обладают большей защитной способностью по сравнению с продуктами коррозии на углеродистых сталях. Объясняется это их меньшей способностью к капиллярной конденсации воды и большим потенциалом в связи с тем, что в состав пленки входят окислы хрома, меди и никеля.  [c.13]

Для всех марок низколегированных сталей требуется применение таких лее средств защиты от коррозии, как и для углеродистых сталей. По сравнению с углеродистыми низколегированные стали, содержащие в качестве легирующих медь и олово (отечественные марки ЮХСНД, ЮХНДП, 15ХСНД), обладают повышенной стойкостью в атмосфере (атмосферокоррозионностойкие стали) и могут применяться для строительных конструкций, опор электропередач без дополнительной защиты.  [c.68]

Присутствие оксидов серы в продуктах сгорания вызывает увеличение скорости коррозии металлов. Однако влияние SOj и SO3 практически не проявляется при больших избытках кислорода. Незначительно влияют оксиды серы на коррозию и при относительно умеренных температурах. При температуре до 540 °С скорость коррозии сталей в оксиде серы(1У), которого значительно больше содержится в дымовых газах, чем оксида epbi(VI), практически такая же, как в воздухе и кислороде. При более высокой температуре скорость коррозии в SO2 тем больше, чем выше температура (рис. 12.1). При 760 °С скорость коррозии углеродистых и низколегированных сталей в оксиде серы(1У) примерно в два раза выше, чем в воздухе. Скорость коррозии сталей в оксиде серы(У1) существенно больше, чем в оксиде серы(1У). Например, при 800 °С наблюдалось увеличение скорости коррозии в SO3, по сравнению с SOj, примерно в три раза для аустенитных сталей типа Х18Н8, низколегированной стали и хрома.  [c.221]

Повышенная по сравнению с углеродистыми сталями хладностойкость легированных и низколегированных сталей про-  [c.228]

Низколегированная сталь является переходной между углеродистыми и легированными сталями. Она по своей основе соответствует малоуглеродистой стали (С 0,1—0,2%), легированной хромом, никелем, медью, ванадием, ниобием и другими элементами в небольших и микроскопических дозах (десятые и сотые доли процента). Микролегирование, незначительно удорожая сталь, значительно повышает ее прочность, хладо-, коррозиопно- и износостойкость по сравнению с углеродистыми сталями, сохраняя ее пластичные свойства и свариваемость.  [c.29]

Термоэлектрический метод испытаний требует по сравнению с три-боэлектрическим значительно меньшее количество эталонных образцов. Так, все углеродистые стали хорошо разделяются с применением в качестве эталона проволоки из стали с 0,45% С. При этом стали с содержанием углерода, меньшим чем в эталоне, будут отрицательны , а с большим — положительны . Для низколегированных сталей хорошим эталоном может служить рояльная проволока с 0,9% С, имеющая сорбитную структуру. Хромистые стали разделяются с применением эталона из стали с 13% Сг и 0,6% Мо, а нержавеющие хромоникелевые — с эталоном из стали с 17% Сг, 12% Ni и 2% Мп. Для латуни и бронзы хорошим эталоном является медная  [c.362]

На основании многолетних натурных и лабораторных исследований установлено, что для преобладающего большинства подземных трубопроводов (за исключением проходящих в кислых почвах, в почвах, заселённых сульфатвос-станавливающими бактериями и бактериями, продукты жизнедеятельности которых коррозионно активны, а также для горячих трубопроводов) достаточная защита углеродистых и низколегированных сталей обеспечивается при -0,85 В по насыщенному медно-сульфатному электроду сравнения (МСЭ). Этот потенциал и принят в качестве минимального защитного потенциала. Значение максимального защитного потенциала для стали с защитным покрытием для любых сред ограничено -1,1 В по МСЭ. Для стали без защитного покрытия он не ограничивается [22].  [c.33]

Низколегированные стали ненамного дороже углеродистых, но по сравнению с иимн имеют лучший комплекс механических свойств, повышенную хла-достопкость, пониженную склонность к механическому старению, лучшую свариваемость, повышенную износостойкость и коррозионную стойкость в различных средах.  [c.13]

Термическое упрочнение незакаливающихся углеродистых и низколегированных сталей, по сравнению с горячекатаным или нормализованным состоянием, повышает и прочность, и пластичность при одновременном улучшении динамической структуры, что важно для обеспечения надежности и долговечности элементов конструкций из этих сталей.  [c.185]


Использование в на слесточных соединениях с угловыми швами, работающих при переменных нагрузках, низколегированной стали высокой прочности (либо термически обработанной конструкционной стали) в большинстве случаев не давало существенного преимущества по сравнению с углеродистой конструкционной сталью [111].  [c.89]

Известно, что с увеличением сечения однопроходных швов на углеродистых и низколегированных сталях ударная вязкость их заметно снижается и усиливается анизотропия металла шва — ударная вязкость вдоль и поперек столбчатых кристаллов, вдоль и поперек шва. Аустенитно-ферритные сварные швы свободны от этого недостатка. В табл. 47 для сравнения приведены резуль таты испытаний на pa tHMenne и ударный изгиб швов, сваренных в один проход на стали 1Х18Н10Т толщиной 10—50 мм. Химический состав швов практически одинаков.  [c.239]

Достигаемая при этом экономия металла в сравнении с его расходом на конструкции из обычной низколегирован ной стали типа ЮГ2С1 и 14Г2 составляет 15—30%, а по сравнению с конструкциями из углеродистой стали СтЗ— около 30—50 %  [c.148]


Смотреть страницы где упоминается термин Углеродистая Сравнение с низколегированной сталью : [c.106]    [c.114]    [c.115]    [c.230]    [c.68]    [c.347]    [c.186]    [c.128]    [c.283]    [c.31]    [c.358]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.291 ]



ПОИСК



Низколегированная сталь 291—304

Р углеродистое

Сравнение МКЭ и МГЭ

Сталь углеродистые

Сталя углеродистые

Углеродистая и низколегированная сталь



© 2025 Mash-xxl.info Реклама на сайте