Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО СОСТОЯНИЯ КОНСТРУКЦИЙ

МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО СОСТОЯНИЯ КОНСТРУКЦИЙ  [c.195]

Глава 4.3. МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО СОСТОЯНИЯ КОНСТРУКЦИЙ  [c.196]

Упрощенные методы расчета напряженного состояния. Наряду с рассмотренными методами, позволяющими учитывать реальные формы поршней и действительные нагрузки, широко применяют методы, в которых производят значительную схематизацию изучаемой конструкции для упрощения процесса расчета напряжений. Выбор расчетной схемы зависит от поставленных целей. Наибольшее распространение получила схема [17], [75] и [76], в основу которой положен схематизированный поршень в виде цилиндрического стакана головка его представлена диском постоянной толщины, а юбка — цилиндром с постоянной толщиной стенки. Несмотря на значительные отличия от реальных конструкций поршней, применение такой схемы дает возможность производить с малой затратой времени сравнительный анализ влияния конструктивных и эксплуатационных факторов на их напряженное состояние. Упрощенные методы полезны также тем, что они облегчают понимание сложных процессов, происходящих в поршне под действием температурных и механических нагрузок.  [c.135]


Сопоставить результаты и точность расчетного и экспериментального определения деформаций в элементах испытываемой конструкции с целью выбора метода расчета напряженно-деформированного состояния (упругий, упругопластический, циклический упругопластический в температурно-временной постановке).  [c.135]

В настояш ее время, в связи с коренной перестройкой топливно-энергетической базы нашей страны в направлении резкого повышения роли ядерного горючего вместо природного газа, и, особенно, жидкого органического топлива, существенно возросла потребность в атомных энергетических установках. Организация их производства может быть основана на выпуске конструкций в многослойном исполнении, что в значительной степени будет способствовать решению всей проблемы. При этом, однако, следует иметь в виду, что атомные установки работают в более сложных и тяжелых условиях, чем сосуды химической промышленности и степень их ответственности значительно выше. Отсюда возникает необходимость в проведении комплекса работ, направленных на обеспечение надежности, долговечности п экономичности изготовления корпусов атомных реакторов, пароперегревателей, емкостей безопасности, защитных корпусов и др. Особое внимание должно быть обращено на вопросы, связанные с установлением напряженно-деформированного состояния многослойных стенок и сварных узлов конструкций, сопротивляемостью их хрупким и квазихрупким разрушениям, расчетами температурных полей в многослойных элементах, оценкой циклической прочности, изучением динамической и термоциклической стойкости конструкций, методам контроля, разработкой нормативных материалов по расчету на прочность.  [c.23]

Разработанные метод и программа позволяют решать сложные инженерные задачи расчета напряженного состояния в корпусах энергетических установок и в сосудах под давлением, имеющих разъемные фланцевые соединения, при эксплуатационных силовых и температурных режимах работы с учетом различных типовых особенностей этих конструкций. Метод и программа удобны для расчета оболочечных конструкций сложной формы с нелинейным распределением поверхностной нагрузки (примеры 1—5), для которых данный метод представляет собой вариант метода конечных элементов, использующий известные решения теории оболочек и пластин. Представление сложных участков оболочек совокупностью 8—  [c.98]

Предложена методика исследования и расчета предельных нагрузок неравномерно нагреваемых тонкостенных конструкций из КМ, в том числе и оболочечных, согласно которой влияние на прочность или устойчивость различных физико-химических явлений, возникающих в условиях неоднородного и нестационарного поля температур, оценивается по результатам испытаний фрагментов или образцов конструкций вместо традиционных образцов материалов. Она базируется на представлениях, вытекающих из законов термодинамики и механики твердого деформируемого тела. Расчет конструкции при различных режимах нагрева ведется с помощью ее обобщенной характеристики — функциональной зависимости между несущей способностью и распределением температур в стенке, определяемой при нестационарных режимах нагрева (метод замены температурных полей, метод преобразования обобщенных характеристик с помощью критериев теплового подобия) либо при изотермических состояниях (метод определяющей температуры).  [c.11]


В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

Таким образом, допустимо при расчете, как это рекомендуется в нормах [4], рассматривать узел соединения патрубка с примыкающей частью корпуса как осесимметричную составную конструкцию из оболочки переменной формы, сопряженной с пластиной постоянной толщины. При правильном учете переменной толщины стенки патрубка и радиусного перехода к пластине напряженное состояние в нем от силовых нагрузок может быть достаточно точно определено методом конечных элементов с использованием формул теории тонких оболочек и пластин [5]. Однако, так как основание патрубка выполнено из углеродистой стали, а приваренная к основанию втулка — из нержавеющей стали, имеющих различные коэффициенты теплового расширения, в зоне сварного шва возникает объемное термоупругое напряженное состояние, которое должно определяться методами теории упругости или экспериментально. Для этой цели при осесимметричном температурном поле наиболее удобен метод механического моделирования термоупругих напряжений по заданному температурному полю [6].  [c.127]

С применением моделей из прозрачных оптически чувствительных замораживаемых материалов разработан и широко применяется метод механического моделирования термоупругих напряжений при известном температурном поле, называемый также методом замораживания — размораживания [1, 2], Этот метод позволяет исследовать напряжения в конструкциях сложной формы, расчет которых затруднен. Метод используется для определения плоского и объемного упругого термонапряженного состояния, причем для разрывных полей этот метод особенно удобен.  [c.61]

В четвертом разделе изложены вопросы термопрочности материалов, которая особенно важна для современных энергетических машин с высокими параметрами рабочих процессов основные соотношения термомеханики, методы расчета температурного состояния и термоупругих напряжений элементов конструкций, прикладные задачи термощгастичности и термоползучести, методы математического моделиров-зния тегшонапряженных конструкций на ЭВМ.  [c.16]

В большинстве задач об определении напряженно-деформированного состояния конструкций, подверженных тепловым воздействиям, можно с высокой точностью пренебречь эффектом связанности и процесс решения разделить на два этапа решение задачи теории теплопроводности и решение упругой или упругопластической задачи с использованием ранее найденных температурных полей. Работы по методу конечных элементов, публикуемые в СССР и за рубежом, носвяш,ены в основном второму этапу исследования. Однако при рассмотрении реальных конструкций часто чрезвычайно важным является детальный расчет полей тепловых нагрузок. В настоящей работе предлагается универсальный с точки зрения практического применения алгоритм решения краевых задач теплопроводности методом конечных элементов этот алгоритм основан на результатах работы [I].  [c.149]


В связи с задачами о термонапряженности с учетом температурных зависимостей упругих и дилатометрических свойств, а также пластических деформаций, развиваюш ихся во времени, была разработана их трактовка в интегральных уравнениях, позволившая использовать методы итерации (повторения) и средства вычислительной техники и тем самым получить решения при сложных конструктивно заданных граничных условиях и экспериментально определенных уравнениях состояния. На этой основе были разработаны способы расчета на прочность и ползучесть с учетом температурных градиентов дисков и лопаток газовых и паровых турбин, трубопроводов и фланцевых соединений, толстостенных корпусов и несущих оболочек и других неравномерно нагретых конструкций.  [c.40]

Путем сопоставления рабочего цикла, определяемого координатами рабочей точки (Р. Т), с некоторым предельным циклом могут быть определены запасы прочности турбинного диска по отношению к двум опасным состояниям (знакопеременное течение, приводящее к термоусталости, и прогрессирующее нарастание деформации, результатом которого может быть нарушение работоспособности конструкции или разрушение статического типа). Аналогия между диаграммой приспособляемости (рис. 71) и известной диаграммой предельных амплитуд напряжений (эта аналогия будет наиболее полной, если линию, определяющую условия знакопеременного течения, построить для температурных циклов при со = onst) позволяет использовать некоторые соображения и методы, принятые в расчетах на выносливость [120, 151, 158].  [c.157]

Обычно в принятых расчетных методиках корпусные детали турбин рассматриваются как составные осесимметричные оболочки переменной толщины, находящиеся в температурном поле, меняющемся вдоль оси и по радиусу оболочки. С применением таких расчетных методов был проведен анализ температурных напряжений в корпусах стопорных и регулирующих клапанов, а также ЦВД и ЦСД турбин типа К-200-130 [2]. Напряжения определялись по температурным полям, полученным термометриро-ванием корпусов при эксплуатации турбины. Полученные результаты дали общую картину термонапряженного состояния этих корпусов. Они показали, что максимальные напряжения в корпусе стопорного клапана имеют место в подфланцевой зоне, а в корпусах регулирующих клапанов — в месте их приварки к цилиндру и что наиболее термонапряженной зоной корпуса ЦВД является внутренняя поверхность стенки в зоне регулирующей ступени. Однако отсутствие учета влияния фланцев и других особенностей конструкции в этих расчетах приводит к тому, что полученные результаты не всегда, даже качественно, могут характеризовать термонапряженное состояние корпусов. В связи с этим предлагаются упрощенные методики учета влияния фланцев, в частности основанные на уравнениях для напряженного состояния при плоской деформации влияние фланца горизонтального разъема ЦВД часто оценивают по теории стержней. Для оценки кольцевых напряжений решается плоская задача при форме контура, соответствующей форме поперечного сечения. Йри этом рассматри-  [c.55]

В ряде случаев авиационные конструкции эксплуатируются в условиях сложного взаимодействия спектров аэродинамической температурной и силовой нагруженности. Воздействие силовых факторов и температуры на этапах полетного цикла порождает интенсивное протекание процессов перераспределения напряжений и деформаций, изменение структурных параметров и механических характеристик материала, накопление циклических и длительных повреждений. Изменение несущей способности элементов авиационных конструкций оказывается особенно выраженным для малоциклового нагружения при наличии пластических деформаций и нагрева, когда изменение механических свойств по числу циклов и по времени обусловливает заметную неста-ционарность кинетики местных напряженно-деформированных состояний. Расчет долговечности в таких условиях, как отмечается в гл. 1, 2, 4, 8 и 11, осуществляют на основе решений соответствующих краевых задач, реализуемых экспериментально, с помощью численных решений или приближенных аналитических методов.  [c.114]


Смотреть страницы где упоминается термин МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО СОСТОЯНИЯ КОНСТРУКЦИЙ : [c.109]    [c.6]    [c.174]    [c.194]    [c.48]   
Смотреть главы в:

Машиностроение Энциклопедия Т I-3 Кн 1  -> МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО СОСТОЯНИЯ КОНСТРУКЦИЙ



ПОИСК



39 — Конструкция 31—32 — Методы



© 2025 Mash-xxl.info Реклама на сайте