Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Производство лигатур

В качестве шихтовых материалов применяют чушковый магний и алюминий, отходы собственного производства, лигатуры, флюсы и и др.  [c.169]

При.нер 2. Подсчитать колич ество меди и алюминия для производства лигатуры с содержанием 33% Си в печи емкостью 1850 кг.  [c.161]

Продукция цветной металлургии слитки цветных металлов для производства сортового проката (уголка, полосы, прутков и т. д.) слитки (чушки) цветных металлов для изготовления отливок на машиностроительных заводах лигатуры — сплавы цветных металлов с легирующими элементами, необходимые для производства сложных легированных сплавов для отливок слитки чистых и особо чистых металлов для приборостроения, электронной техники и других отраслей машиностроения.  [c.20]


В качестве металлической шихты используют литейные доменные чугу-ны, отходы собственного производства, чугунный н стальной лом, различные ферросплавы, лигатуры и другие материалы.  [c.162]

Исходными материалами для металлокерамических магнитов отечественного производства являются следующие порошки никеля (марка ПНЭ ГОСТ 9722—79), кобальта (марка КП-1 ГОСТ 9721—71), меди (марка ПМ-2 ГОСТ 4960—75), титана (марки ИМП-ТА или порошок лигатуры Ре—Т1), железа (карбонильный, вихревой или восстановленный), лигатуры алюминия Ре—А1 и лигатуры циркония Ре—2г—А1. Назначение присадки циркония — повышение коэрцитивной силы и остаточной индукции, что, в свою очередь, приводит к возрастанию магнитной энергии. Легирование цирконием полезно также и в технологическом отношении, так как позволяет понижать критическую температуру изделия при термомагнитной обработке. Назначение остальных легирующих присадок то же, что и у литых сплавов (см. табл. 24).  [c.108]

Лигатура медно-бериллиевая предназначается для производства бериллиевой бронзы. Содержание не менее 4% Be, примесей (на 1% бериллия) Fe, А1, Si и Mg — не более 0,04% каждого элемента, 0,007 РЬ, Ni, Bi и Р — в пределах допустимого содержания в меди марок МО и Ml. Поставляется по ЦМТУ 4487—54.  [c.97]

Лигатуры широко применяются главным образом в производстве алюминиевых и магниевых сплавов. Это обусловливается тем, что данные сплавы резко окисляются при перегреве до температур выше 800 и в них нельзя вводить непосредственно тугоплавкие присадки [27]. Лигатуры должны обладать температурой плавления, близкой к температуре плавления металла, к которому они присаживаются, и в то же время иметь высокое содержание тугоплавкого металла. Лигатура, содержащая одну тугоплавкую примесь, называется двойной, а две — тройной. Характеристика различных двойных и тройных лигатур и способы их изготовления указаны в табл. 180 и 181.  [c.191]

Лигатуры широко применяются при производстве алюминиевых и магниевых сплавов, а также при выплавке специальной бронзы и латуней.  [c.56]

Таким образом, комплексное раскисление металла алюминием и редкоземельной лигатурой — наиболее эффективное средство повышения механических свойств и улучшения качества отливок из углеродистой стали — создает возможности производства сложных отливок ответственного назначения II и III групп без изменения цеховой технологии выплавки металла и термообработки литых заготовок.  [c.98]

Пределы прочности и текучести, а также ударная вязкость стали повышаются при содержании в ней ванадия без снижения относительные сужения и удлинения. Ванадий связывает азот и снижает чувствительность стали к старению, повышает твердость, износостойкость н устойчивость против отпуска, а также теплостойкость стали, что благоприятно влияет на стойкость режущего инструмента. Ванадий широко используют при производстве конструкционных, жаропрочных и инструментальных сталей. В последнее время все чаще применяется микролегирование ванадием конструкционных сталей, что значительно повышает Их качество. Для легирования стали ванадием используют феррованадии табл. 96) или специальные ванадийсодержащие лигатуры. Реже для легирования стали используют ванадийсодержащие шлаки, ванадийсодержащие металлизированные окатыши н т. п. материалы.  [c.294]


Появление современных методов выплавки монокристаллов стало возможным в результате разработки эффективных способов удаления бора, углерода и циркония из состава сплавов [4,5]. Производство переплавленных заготовок чистых сплавов требует более точного контроля за содержанием этих элементов, чем в исходных суперсплавах. Дальнейшие этапы разработки монокристаллических сплавов будут включать в себя создание сплавов с рением, обладающих повышенным сопротивлением ползучести [11,12], и сплавов с небольшими добавками гафния и иттрия, обеспечивающих максимальную стойкость этих сплавов к окислению [6]. В этом случае для предотвращения окисления химически активного иттрия (или La, который, опираясь на опыт его успешного применения для увеличения стойкости к окислению деформируемых" сплавов, также может рассматриваться как возможный легирующий элемент) потребуется очень строгое соблюдение как режимов выплавки лигатуры, так и параметров самого процесса точного литья [13].  [c.334]

При плавке в плавильную печь загружают шихту - смесь твердых материалов, состоящую из технически чистых материалов, машинного лома, отходов собственного производства (литников, бракованных отливок и др.) и лигатур (вспомогательных сплавов, используемых для введения в расплав химических элементов - легирующих добавок - в соответствии с химическим составом сплава). Лигатуры также используются для введения в расплав тугоплавких добавок в небольшом (до 0,1 %) количестве. Состав шихты определяется химическим составом приготовляемого сплава.  [c.195]

При использовании для приготовления сплавов возврата собственного производства порядок плавки должен быть следующий расплавление чистого алюминия и лигатуры А1—Be введение при 670—700 °С возврата собственного производства. После расплавления возврата порядок загрузки остальных составляющих шихты и режимы плавки сохраняются такими же, как и при приготовлении на чистых металлах. Температура перегрева сплавов не должна превышать 750 °С.  [c.303]

В качестве шихтовых материалов используют технически чистый алюминий, силумины, отходы собственного производства, лигатуры и другие добавки. Для удаления водорода и неметаллических включений алюминиевые сплавы рафинируют, как правило, гексахлор-этаном, который при температуре 740—750 °С вводят в расплав в количестве 0,3—0,4 % массы расплава. Пузырьки хлористого алюми-  [c.167]

В качестве шихтовых материалов используют технически чистый алюминий, силумины, отходы собственного производства, лигатуры и другие добавки. Для удаления водорода и неметаллических включений алюминиевые сплавы рафинируют, как правило, гексахлорэтаном, который при температуре 740. .. 750 °С вводят в расплав в количестве 0,3. .. 0,4 % массы расплава. Образующиеся пузырьки хлористого алюминия поднимаются на поверхность расплава и удаляют водород и неметаллические включения.  [c.205]

Железо-никель-алюминиевые сплавы, как и железо-никель-алюминиево-медные и железо-никель-алюминиево-кобальтовые, используются для получения деталей и металлокерамическим способом. Этот способ особенно выгоден для изготовления мелких деталей массой от долей грамма до 30 г. Применение металлокерамической технологии решило задачу производства мелких деталей из сплавов, содержащих кобальт. Металлокерамическая технология обеспечивает при производстве деталей из этих сплавов меньше отходов вследствие отсутствия литейных дефектов, лучшей шлифуемости, большей механической прочности, однородности. При давлении спекания в чистом водороде 400—800 МПа при 1300° С металлокерамические магниты из железо-никель-алюминиепого сплава имеют плотность на 8—7% меньше, чем литые, и магнитные свойства, близкие к таковым у литых магнитов. Существуют два способа получения магнитов по металлокерамическому принципу.-В первом случае детали из смеси чистых порошков или их лигатуры прессуются в пресс-формах в два приема сначала при пониженных давлении и температуре, потом при полном давлении с последующим окончательным спеканием завершающей операцией является термическая или термомагнитная обработка. Второй способ заключается в изготовлении металлокерамических заготовок сутунок , из которых после термообработки и прокатки на полосы и  [c.310]


Кафедрой проведено изучение и обобщение опыта производства маломарганцовистой и нелегированной стали для фасонного литья на заводах Минстройдормаша и изданы типовые технологические инструкции. Предложен метод раскисления стали алюминием путем насадки литых колец из алюминия и его лигатур на стопор сталеразливочного ковша, что позволяет существенно улучшить использование алюминия и полноту раскисления стали. Этот способ раскисления принят и внедрен на заводах Минстройдормаша, Минтяжмаша и др.  [c.75]

Производство тугоплавких металлов (молибдена, ниобия, вольфрама, тантала и др.) неуклонно расширяется. Если 10—15 лет назад эти металлы находили применение в основном как лигатуры при выплавке различных сталей и сплавов, а также в качестве нагревательных элементов, то сейчас они находят применение и как конструкционные материалы. Основным преимуществом этих материалов является высокая температура плавления, вследствие чего данные металлы способны показывать более высокие значения прочности, чем легированные стали при тех же рабочих температурах конструкции. Так, 100-часовая длительная прочность нелегированного наклепанного молибдена при 980 " С равна 15,5 кПмм , легированного 0,5% Ti—37,2 кПмм . В большинстве же случаев современные сверхпрочные сплавы имеют при тех же рабочих температурах длительную прочность, не превышающую 7 кПмм" [30].  [c.137]

Выплавка алюминиевых сплавов сприменением в шихте отходов собственного производства и лигатур [2]. Шихта составляется на 40—бОО/д из отходов (брака и литника) и 60—400/о из свежего металла (чушкового алюминия, лигатуры и т. д.). Сначала в печь- загружают чушковый алюминий, а после его расплавления — лигатуру и отходы своего производства. Затем сплав рафинируют и после снятия шлака разливают по формам. Температура нагрева металла не должна превышать 800°, а температура заливки —710—750° в зависимости от конфигурации отливок. При изготовлении сплавов, содержащих цинк, последний вводят в чистом виде незадолго перед разливкой, подвергнув его сначала подогреву.  [c.195]

Технически чистые сорта гидроокиси или окиси бериллия, которые получают как промежуточные продукты для производства бериллия или меднобер ил лиевой лигатуры, в качестве основных примесей содержат соли натрия и небольшие количества элементов, имевшихся в исходном концентрате (кремний, железо, алюминий, медь, магний, литий, марганец и др.)-  [c.54]

Производство бериллия и его лигатур, я также вопросы применения бериллия, его сплавов н соединений подробно освещены в главе Бериллий М Б. Рейфмана в книге Основы металлургии , т. 3. Металлургнздат, 1963, стр. 404—440 — Прим. ред.  [c.56]

РЗМ. В шлаке было 0,5 % РЗМ в пересчете на СеОг. Таким же Способом производится лигатура Si—V—Са. По ТУ 14—139—76—80 она должна содержать 30—50 % Si >4,0% V, >-8% Са <1,0% С <0.1 % Р с0,05 % S. Прп использовании ее для производства рельсовой стали стойкость рельс повысилась примерно на 30 %, экономия от ее применения составляет 2400 руб. на 1 т лигатуры [84]. На производство I т лигатуры расходуется 715 кг ФС65, 780 кг извести, ПО кг Плавикового шпата, 175 кг феррованадия. Расход электроэнергии 5220 МДж (1450 кВт/ч). Лигатуры Fe-—Si—Са—Ti—А1 имеют следую-  [c.127]

Хром является одним из важнейших легирующих металлов. Присадка хрома повышает пределы прочности и текучести стали при медленном снижении относительного удлинения. В углеродистых сталях присутствие хрома величивает ее твердость и износостойкость. Окалиностойкие стали содержат 3—12% Сг, нержавеющие и кислотостойкие стали — >12% Сг. Хро.м широко применяют при производстве сложнолегированных сталей, что позволяет получить высокие эксплуатационные качества при необходимых свойствах стали. В последние годы все иире используют и легированные хромом чугуны. Черная металлургия потребляет 60 % добываемого хрома. Для легирования стали используют в основном феррохром — сплав хрома и железа и ферросилико-хром — сплав железа, хрома и кремния. Сортамент хромовых сплавов, основанный на содержании в сплаве углерода, приведен в табл. 57, 58. По принятой терминологии сорта, содержащие <2 % С, называют рафинированным феррохромом. В тех случаях, когда в получаемых хромистых сплавах ограничено содержание железа, применяют вместо феррохрома металлический хром (табл. 59) или специальные лигатуры  [c.188]

Чистый по углероду и фосфору кремнистый (7—9 % Si) феррохром, используемый при производстве сварочных электродов, может быть получен смешением в ковше низкоуглеродистого феррохрома и ферросиликохрома или непосредственно в рафинировочной печи введением в шлак за 5—25 мин до выпуска плавки ферросиликохрома в количестве, обеспечивающем необходимое содержание кремния. Это обеспечивает извлечение хрома 87—89 % и низкое содержание углерода и фосфора в сплаве. Для легирования стали и чугуна также используются лигатуры типа Si—Сг—А1 (например, КХА5 40—50 % Сг, 20—30 % Si и 2—6 % А1), Сг —W (>30 % W, Сг —ост.), Ni—Si—Сг (например, НКХ1 15—35 % Сг, 35—55 % Ni, 1—4 % Мо, 6—20 % Si) и др.  [c.241]

Внепечным способом производится хромтитановая лигатура на шихте следующего состава 550 кг оксида хрома СггОз, 550 кг оксида титана TiOj, 625 кг алюминиевого порошка, 550 кг бихромата калия, 132 кг извести. Лигатура имеет следующий состав, % Сг 64—70 Ti 18—23 Si <0,6 А1 9—12 Fe 1,0—1,8 С <0,06 S <0,02. Извлечение хрома на плавке составляет 90%, титана 52 /о. Более высокие технико-экономические показатели были получены при производстве такой лигатуры в электропечи с предварительным расплавлением части оксидов. Это позволяет отказаться от термитных добавок и снизить расход алюминия на 1 т лигатуры на 130 кг [9]. Внепечным алюминотермическим способом на блок выплавляют лигатуру А1—Ti—Мо, используя в качестве молибденсодержащего сырья оксид молибдена МоОз. Лигатура содержит, % Мо 48—53 Ti 6—10 Fe 0,2—0,8 Si 0,1—0,7 Сг 0,04—0,4.  [c.281]

Опыты по производству ферромолибдена проводили при массе садки 5—8 т и мощности индуктора 2500 кВт. Запуск реактора начинается с заливки в него 1,5 т жидкого металла, выплавленного в отдельной печи. В расплав загружают чушковый или гранулированный чугун в количестве, обеспечивающем общую массу железа 3 т. В полученный расплав при температуре около 1500вдувают смесь оксида. молибдена МоОз (содержащую 60 % Мо и 90 % МоОз) с угольной пылью и получают 50%-ный ферромолибден (содержание углерода в готовом продукте не превышает 0,1 %). Затем плавку выпускают, оставляя в печи 1 т жидкого металла. При повторном цикле в реактор вводят 2,5 т Fe и 4 т МоОз, На каждой плавке получают приблизительно 1100 кг шлака. Расход электроэнергии составляет 12240 МДж/т (3400 кВт-ч/т) ферромолибдена, Продолжительность всего цикла 240 мин, в том числе операция расплавления (с загрузкой чугуна) —40 мин продолжительность продувки 160 мин, регулирование химического состава — 35 мин и выпуск плавки — 5 мин. Это обеспечивает годовую производительность 3100 т в пересчете на молибден при трехсменной работе и 5000 ч работы в год. Разработана технология плавки ряда молибденсодержащих лигатур. Предложенный нами кремнистый  [c.291]


Основной задачей технологов по обеспечению рентабельности производства ирн выплавке феррониобия и ниобневых лигатур является обеспечение высокого качества сплава и полного использования ниобия предупреждение потерь сплава и экономия алюминия. Металлический ниобий обычно получают восстановлением соответствующих соединений ниобия натрием, кальцием и магнием и в вакууме карбидо.м ниобия или углеродом. Также используют термическое разложение галогенов п электролиз расплавленных солен. Для рафинирования металла применяют методы плавок в печах с расходуемым электродом, электроннолучевой, во взвешенном состоянии, гарнисажной, зонной н т. д.  [c.316]

Чугун для получения вермикулярного фафита плавят в электродуговых печах с основной и кислой футеровками, в индукционных печах промышленной и высокой частот и реже в вагранках. В качестве шихтовых материалов используется передельный чугун, возврат собственного производства, ферросилиций ФС75, лигатуры.  [c.201]


Смотреть страницы где упоминается термин Производство лигатур : [c.281]    [c.79]    [c.288]    [c.47]    [c.49]    [c.56]    [c.56]    [c.35]    [c.125]    [c.125]    [c.188]    [c.246]    [c.254]    [c.315]    [c.338]    [c.338]    [c.268]    [c.198]    [c.516]   
Смотреть главы в:

Производство ферросплавов  -> Производство лигатур



ПОИСК



Лигатура

Производство кальцийсодержащих лигатур



© 2025 Mash-xxl.info Реклама на сайте