Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Направляющие лопатки паровых турбин

Рабочие и направляющие лопатки паровых турбин 550 750  [c.58]

НАПРАВЛЯЮЩИЕ ЛОПАТКИ ПАРОВЫХ ТУРБИН  [c.422]

Рабочие и направляющие лопатки паровых турбин Роторы, диски и лопатки турбин  [c.677]

Роторы, диски паровых турбин, рабочие и направляющие лопатки паровых и газовых турбин  [c.61]

Звягинцев В. В., Реакция на рабочих лопатках паровой турбины в зависимости оти/Со и от отношения выходных плош,адей в рабочих и направляющих каналах, Советское котлотурбостроение , 1938, № 7.  [c.299]


К таким узлам и деталям относятся унифицированные рабочие и направляющие лопатки паровых и газовых турбин (окончательная обработка) унифицированные узлы регулирования, подшипники, муфты соединительные, уплотнения концевые и диафрагменные.  [c.77]

Применение. Направляющие и рабочие лопатки паровых турбин, конструкционные элементы компрессоров, детали газовых турбин.  [c.237]

Жаропрочная до 600° С Роторы, диски паровых турбин, рабочие и направляющие лопатки паровых и газовых турбин  [c.161]

I. Несмотря на существующее разнообразие конструкций, рабочие и направляющие лопатки паровых и газовых турбин мо-  [c.79]

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя стать во многих изделиях и конструкциях. Например, корпуса паровых турбин, насосов, вентилей, лопатки направляющего аппарата, коленчатые валы, поршни и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.  [c.61]

Современные паровые турбины выполняются многоступенчатыми. В активных паровых турбинах основное падение давления осуществляется в неподвижных каналах переменного сечения, т. е. в соплах, образованных направляющими лопатками, закрепленными в диафрагмах и сопловых аппаратах (фиг. I).  [c.5]

Типовая конструкция сварной диафрагмы паровой турбины, показанная на фиг. 91, состоит из тела 5, обода 1 и решетки направляющих лопаток 5, включающей в себя Внутреннюю и наружную бандажные ленты 2 и 4 с пробитыми отверстиями, в которые вставлены направляющие лопатки. Торцы лопаток по периметру привариваются угловыми швами к бандажным лентам. Решетка стыковыми швами с односторонней разделкой сваривается с телом и ободом. Диафрагма имеет горизонтальный разъем и состоит из двух половин.  [c.142]

Диафрагмы газовых турбин по своей конструкции заметно отличаются от рассмотренных выше диафрагм паровых турбин. Необходимость пропуска большого объема газов при относительно небольшом его давлении приводит к использованию направляющих лопаток большой высоты и ширины профиля. По условиям эксплуатации газовой турбины при остановке неизбежны приток в турбину холодного воздуха из компрессора и быстрое охлаждение проточной части. В этом случае использование диафрагм обычной для паровых турбин конструкции с массивными телом и ободом приводит к возникновению в лопатках значительных термических напряжений, могущих вызвать  [c.148]

ЦКТИ разработан профиль рабочей лопатки постоянного сечения. Этот профиль применяется в настоящее время в ЦВД турбин К-300-240, ПВК-200 и др. МЭИ разработан профиль направляющей лопатки постоянного сечения, применяемый в отдельных ступенях паровых турбин. Частично применяются и другие профили, разработанные ЦКТИ и МЭИ.  [c.473]


В ступенях, в которых лопаточный аппарат обтекается потоком при сравнительно малых значениях числа Re (ступени цилиндра низкого давления конденсационных паровых турбин, а также ступени газовых турбин, работающих по открытой схеме), с аэродинамической точки зрения не требуется высокой чистоты поверхности лопаток. Так, выше было указано, что из условий требований аэродинамики направляющие и рабочие лопатки последних ступеней турбины типа К-300-240 достаточно обработать по 6-му классу чистоты. При этом здесь имеется в виду выходная часть профиля лопаток, чистота остальной части поверхности этих лопаток может быть даже ниже. Однако в этом случае исходить при назначении класса чистоты только с точки зрения аэродинамики нельзя. Пониженные требования к чистоте поверхности этих лопаток могут оказать отрицательное влияние на их предел усталости.  [c.125]

При конструировании самой пятиступенчатой газовой турбины были применены, как показано на рис. 5-1, в основном, испытанные узлы промышленных паровых турбин той же фирмы. Корпус, во избежание нежелательных термических напряжений, получил простую форму с горизонтальным разъемом. Корпус турбины изготовлен из легированной стали. На уровне осей он опирается на мощные лапы, так что возможны свободные тепловые расширения, а ось корпуса всегда совпадает с осью вала. Направляющие лопатки закреплены в диафрагме, которая подверглась точной центровке в корпусе турбины, однако имеет возможность свободного расширения при нагреве. Поэтому радиальное тепловое расширение ротора и направляющего аппарата является одинаковым и зазоры между неподвижными и вращающимися частями остаются постоянными независимо от температуры газов. Благодаря такой конструкции турбина легко выдерживает быстрый пуск.  [c.167]

Стенки проточной части компрессора выполняют весьма важную роль эффективного устройства дополнительного дробления капелек воды в потоке сжимающегося газа, хотя это связано с потерей энергии и эрозией лопаток. Кроме того, капельки воды в проточной части хорошо перемешиваются с газом вследствие различных направлений векторов скорости капелек и газа. Все эти процессы способствуют улучшению теплообмена капель с окружающим газом и их испарению. Однако в результате действия центробежных сил некоторая часть крупных капель все же может попадать на корпус компрессора и образовывать на нем жидкую пленку, которая будет частично испаряться и стекать вниз. Для удаления воды из ступеней корпус компрессора в нижней части должен иметь дренажи. Как показали экспериментальные исследования [18], при работе мощных паровых турбин с высокими окружными скоростями рабочих колес (300—350 м/с) коэффициент влагоудаления из влажного пара под действием центробежных сил в последних ступенях турбин оказывается очень низким 2— 3% — за рабочими лопатками и 0,5—1% — за направляющим аппаратом. Такие же значения коэффициента влагоудаления, по-видимому, будут и в первых ступенях осевого (или центробеж-  [c.47]

Абразивному изнашиванию подвергаются детали сельскохозяйственных, дорожно-строительных, горных, транспортных машин и транспортирующих устройств, узлы металлургического оборудования, металлорежущих станков, шасси самолетов, рабочие колеса и направляющие аппараты гидравлических турбин, лопатки газовых турбин, трубы водяных экономайзеров и паровых котлов, лопасти дымососов, трубы и насосы земснарядов, бурильное оборудование нефтяной и газовой промышленности, подшипники валов гребных колес, подшипники гребных валов судов при плавании на мелководье и т. п.  [c.155]

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя сталь во многих изделиях и конструкциях. Из них изготовляют оборудование прокатных станов (прокатные валки массой до 12 т), кузнечно-прессовое оборудование (траверса пресса, шабот ковочного молота) в турбостроении — корпус паровой турбины, лопатки направляющего аппарата в дизеле-, тракторе- и автомобилестроении — коленчатые валы, поршни и многие другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.  [c.299]


В силу ЭТОГО При разработке конструктивно-нормализованного ряда паровых турбин мощностью 25 ООО—100 ООО кет основным требованием как к основанию ряда, так и ко всем его производным являлось достижение максимального высокого к. п. д. Тем большее значение приобретает творческий опыт конструкторов Ленинградского металлического завода, которым удалось унифицировать такие детали турбин упомянутого ряда, как направляющие и рабочие лопатки, выхлопные патрубки, детали и узлы механизмов парораспределения, подшипники и детали уплотнения, муфты, арматуру, крепе ж и т.п., благодаря чему были достигнуты серьезные производственные результаты, заслуживающие самого пристального внимания с точки зрения осуществления конструктивного синтеза.  [c.188]

Направляющие лопатки паровых турбин обычно имеют Т-образные хвосты, рабочие — Т-образные с буртиком, зубчиковые (высоконагруженные лопатки) и елочные. Эти лопатки через специально разделанный колодец погружают в корпус или ротор и по кольцевым пазам передвигают до нужного места для лучшей фиксации их внизу иногда подклинивают проволокой.  [c.28]

Рис. 287. Охлаждаемая направляющая лопатка паровой турбины СКР-100 ХТГЗ Рис. 287. Охлаждаемая направляющая <a href="/info/107259">лопатка паровой турбины</a> СКР-100 ХТГЗ
Сопла Лаваля нашли широкое распространение в технике. Одно из первых их применений - использование в направляющих аппаратах паровых турбин. В настоящее время подвод сверхзвукового потока газа к рабочим лопаткам газовых и паровых турбин осуществляется через сверхзвуковые сопла. Для создания дополнительной реактивной тяги они применяются в жидких и твердотопливных ракетных и всевариантных самолетных двигателях и ускорителях. Сопло Лаваля является также одной из составных частей газодинамического и химического лазера.  [c.76]

В турбине Лаваля при снижении частоты вращения вала при j = = onst растет абсолютная скорость выхода пара с рабочих лопаток с2 И, как следствие этого, к. п. д. турбины быстро падает. Для уменьшения выходных потерь со скоростью С2 и понижения частоты вращения вала Кертис предложил турбину с двумя ступенями скорости. На рис. 6.2,6 представлены схема этой турбины и графики изменения абсолютной скорости и давления пара в проточной части турбины. Пар с начальными параметрами ро и То расширяется до конечного давления pi в соплах 2, а на рабочих лопатках 3 и 3 происходит преобразование кинетической энергии движущегося потока в механическую работу на валу 5 турбины. Закрепленные на диске 4 турбины два ряда рабочих лопаток 3 и 3 разделены неподвижными направляющими лопатками 2, которые крепятся к корпусу I турбины. В первом ряду рабочих лопаток 3 скорость потока падает от i до j, после чего пар поступает на неподвижные лопатки 2, где происходит лишь изменение направления его движения, однако вследствие трения пара о стенки канала скорость парового потока падает от с2 до с. Со скоростью с пар поступает на второй ряд рабочих лопаток 3 и снова повторяется идентичный процесс. Поскольку преобразование кинетической энергии в механическую работу на валу турбины Кертиса происходит в двух рядах рабочих лопаток, максимальное значение г ол получается при меньших отношениях k/ j, чем у одноступенчатой турбины. А это значит, что частота вращения вала турбины (колеса) Кертиса может быть снижена по сравнению с одноступенчатой турбиной. Анализ треугольников скоростей показывает, что оптимальный к. п. д. турбины Кертиса достигается при входной скорости пара t i вдвое большей, чем у одноступенчатой турбины. Это означает, что в турбине с двумя ступенями скорости может быть использовано большее теплопадение /loi, чем в одноступенчатой.  [c.302]

Осевая многоступенчатая турбина (рис. 4.3, а) состоит из вращающегося ротора 1 и неподвижного корпуса 3 Ротор несет ряды закрепленных на не 1 рабочих лопаток 8. Перед каждым рядом рабочих лопаток в корпусе устанавливаются сопловые лопатки 9 (в паровы> турбинах их часто называют направляющими). Для уплотнения зазоров междз ротором и корпусом применяются кон-  [c.180]

Применение чугуна с шаровидным графитом для изготовления деталей турбин. Изготовляют весьма ответственные детали турбин, работающие в условиях ударных и знакопеременных нагрузок лопатки направляющих аппаратов гидротурбин, рычаги, поршни рабочего вала, регулирующие кольца, крестовины рабочего колеса, корпуса паровых турбин, корпуса клапана, основания гидротурбин Пельтона, подпятники турбин Каплана и др. Наиболее характерными деталями гидротурбин, отливаемых из чугуна с шаровидным графитом, являются лопатки направляющего аппарата. На одну турбину устанавливается 24 лопатки весом 1,8 т. каждая. Общая длина одной лопатки 3045 мм, ширина 780 мм, максимальный диаметр сплошной цапфы равен 218 мм, а минимальная толщина пера — 40 мм. Лопатки отливают из чугуна с шаровидным графитом и ферритной структурой металлической основы, получаемой после термической обработки отливок по следующему режиму нагревание до 920—940° С со скоростью 80—100°С/ч, выдержка при этой температуре в течение 3 ч, охлаждение до 700— 720° С, выдержка при этой температуре в течение 16 ч, дальнейшее охлаждение с печью. В результате такой термической обработки чугун приобретает ферритную структуру и следующие механические свойства Ов не менее 40 кПмм , Oj не менее 25 кПмм , б не менее 8%, не менее 3 кГм1см , НВ 176—250.  [c.163]


Следует отметить особенности работы последней ступени при малом пропуске пара через нее. Исследованиями, например ВТИ [38], показано, что при работе с малыми объемными расходами пара в корневых сечениях последних ступеней мощных паровых турбин возникает отрыв потока пара, развивающийся с уменьщением нагрузки и с ухудшением вакуума. Это явление исследовано на натурной турбине, у которой в последней ступени d x,ll=2,4. Согласно этим опытам при нагрузке менее 15% номинальной и на холостом ходу в периферийной области направляющих лопаток (///о=0,8 1,0) также наблюдается вихревое течение. При нагрузках N= = (0,08н-0,13)Л/н и на холостом ходу при ухудшенном вакууме до 80—86% был отмечен повышенный уровень динамических иапряжепий на рабочих лопатках последней ступени турбины [91].  [c.12]

Для того чтобы достигнуть в газовых турбинах значения коэффициента полезного действия того же порядка, что и в паровых, начальная температура газа должна быть на 100—150° выше, чем температура пара. Высокая температура, низкие давления, большие расходы и малое число ступеней придают конструкциям газовых турбин специфический характер. Как правило, облопачивание первых ступеней газовых турбин выполняется из жаропрочной стали аустенитного класса. Это относится как к рабочим, так и к направляющим лопаткам, так как при температуре 650—750°, характерной для современных газовых турбин, даже при сравнительно невысоких напряжениях в направляющих лопатках приходится выбирать окалиностойкие материалы. По тем же соображениям горячие газовпускные патрубки турбин, внутренние части камер сгорания и внутренние обечайки горячих газопроводов выполняются из жаростойкой аустенитной стали.  [c.16]

В паровых и газовых турбинах на направляющих лопатках на вогнутой их поверхности и на входной части выпуклой поверхности, где имеет место конфузорное течение с большим градиентом давлений, наиболее вероятно, что пограничный слой является ламинарным. На выходной же части выпуклой поверхности этих лопаток (после точки минимума давлений) пограничный слой в большинстве случаев является турбулентным. На рабочих лопатках ступеней с большой степенью реактивности турбулентный пограничный слой более развит, чем на направляющих лопатках. Этому способствует обтекание рабочего венца сильно турбули-зированным в реальных условиях потоком. В ступенях с малой  [c.105]

Температура направляющих и рабочих лопаток газовых турбин выше, чем паровых турбин, поэтому детали газовых турбин необходимо делать из более жаропрочных сталей. Лопатки газовых турбин и крепежные детали, работающие при 650° С, изготовляют из стали ЭИ612 (Х15Н35ВЗТ), Для деталей, работающих при еще более высоких температурах, применяют сплавы на никелевой основе, называемые нимониками.  [c.182]


Смотреть страницы где упоминается термин Направляющие лопатки паровых турбин : [c.399]    [c.561]    [c.364]    [c.100]    [c.298]    [c.198]    [c.46]    [c.208]   
Смотреть главы в:

Конструкция и расчет на прочность деталей паровых и газовых турбин Изд.3  -> Направляющие лопатки паровых турбин



ПОИСК



Лопатка

Лопатка направляющая

Лопатки паровых турбин

Направляющие

Турбина паровая

Турбинные лопатки

Турбины Паровые турбины

Турбины паровые

Турбины — Лопатки —



© 2025 Mash-xxl.info Реклама на сайте