Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нормальна форма (две степени свободна

Таким образом, система (8.24) после перехода к новым обобщенным координатам (8.25) распалась на два независимых уравнения (8.26) и (8.27), каждое из которых описывает движение с одной свободной координатой (о, или соответственно). Преобразование координат, подобное выполненному выше, возможно при любом числе степеней свободы (если только трение отсутствует). Такие обобщенные координаты называются нормальными, а соответствующие им формы колебаний — нормальными формами. Особенность этих форм состоит в том, что колебания по каждой нормальной форме совершаются совершенно независимо от колебаний других форм.  [c.230]


Особенности динамики упругих систем с распределенными параметрами. С увеличением числа степеней свободы упругой системы до бесконечности она превращается в систему с распределенными параметрами. Статика таких упругих систем рассматривалась в гл. VI и VII. Их динамика составляет раздел теории колебаний. Как и в упругих системах с конечны.м числом степеней свободы (свободных координат), колебания систем с распределенными параметрами имеют нормальные формы. Эти формы зависят от конфигурации системы и способов ее закрепления и опирания. На рис. 8.24 изображены нормальные формы поперечных колебаний тонкого стержня с шарнирно опертыми концами.  [c.233]

Ниже показывается использование фазовой плоскости применительно к нормальной форме ) линейной однородной системы дифференциальных уравнений свободных линейных колебаний системы с одной степенью свободы  [c.75]

Переход от дифференциального уравнения свободных колебаний системы с одной степенью свободы р -р = 0 к нормальной форме системы дифференциальных уравнений производится так вводятся обозначения р = = Хь 4 Х2, учитывая которые, получаем <= Хз, 2 >  [c.75]

В п. 4.4 была сформулирована задача о динамических перемещениях, выраженных через нормальные формы колебаний системы со многими степенями свободы, когда начальные условия задаются в виде перемещения и скорости. При наличии демпфирования динамические перемещения, соответствующие /-й форме свободных колебаний системы, в соответствии с выражением (4.55) должны описываться следующим выражением  [c.311]

Если колебательная система состоит из п частей с массами гПп, упругостями Sn и сопротивлениями г,г, связанных друг с другом, т. е. имеет п степеней свободы, то ее колебания отличаются от колебаний системы с двумя степенями свободы, в основном тем, что вместо двух собственных частот и двух форм нормальных колебаний она имеет п собственных частот и п форм нормальных колебаний. При воздействии синусоидальной силы, приложенной к одной из частей системы, во всей системе возбуждаются сложные колебания, которые состоят из свободных колебаний с частотами, равными собственным частотам системы, и вынужденных колебаний с частотой внешней силы.  [c.45]


ОКИСЛИТЕЛЬНОЕ ПЛАМЯ - сварочное пламя, в средней зоне которого имеется избыток свободного кислорода. О- п. имеет голубоватый оттенок и меньшие размеры по сравнению с размерами нормального пламени вследствие более энергичного окисления. Укороченное ядро пламени имеет форму конуса. О. п. горит с шумом, степень которого зависит от давления поступающего в горелку кислорода.  [c.95]

Теория малых колебаний механических систем с несколькими степенями свободы, изложенная в предыдущем параграфе, находит широкое применение при исследовании колебательных спектров многоатомных молекул. В данном параграфе мы рассмотрим в качестве примера свободные колебания симметричной трехатомной молекулы XjY. Однако, прежде чем приступить к расчету собственных частот и форм нормальных колебаний указанной молекулы, необходимо сделать ряд общих замечаний.  [c.246]

Обобщенные силы, по предыдущему, представляют собой производные от свободной энергии по параметрам а, /3, ., и, взятые с обратным знаком. Этот вывод имеет многочисленные приложения. Пусть мы хотим, например, составить уравнения равновесия упругого тела. Для этой цели мысленно выделим в упругом теле некоторый прямоугольный параллелепипед и рассмотрим напряжения, действующие на его грани, и некоторые величины а, определяющие деформацию, т. е. изменение линейных размеров и изменение углов. Свободная энергия, представленная как функция параметров а, для малых деформаций может быть разложена в ряд по возрастающим степеням а. Дифференцируя полученный ряд, мы определим напряжения. Из тщательно проведенных исследований видно, что вполне достаточно ограничиться в ряде для Ф членами второго порядка. Если за нормальное состояние тела принять его недеформированное состояние, то пропадет член ряда, не зависящий от параметров. Поскольку в нормальном состоянии никаких напряжений нет, то обратятся в нуль и члены с первой степенью а, так что Ф можно считать однородной квадратичной формой от деформаций . Представим себе, например, растянутый и в то же время закрученный стержень. Обозначим через А удлинение, а через из — угол кручения. При заданном А, стержень обладает одинаковыми внутренней энергией и энтропией, а следовательно, и свободной энергией, независимо от того, закручен ли он на данный угол вправо или влево поэтому Ф не содержит нечетных степеней ш. Итак,  [c.72]

Преобразование энергий к нормальной форме вида (101.18) (на основании свойств максимума или другим способом) есть основание исследований но теории малых колебаний. Ср. СогЬец and S t е h 1 е [3], гл. 8 (где имеется большое число примеров систем с малыми и большими числами степеней свободны) Г о л д-с т е й в [7J, гл- X Уиттекер [28], гл. VII.  [c.361]

Согласно подходу Ферми [3], можно рассуждать следующим образом. В случае устойчивости в каждой окрестности начала координат Я лежит одпосвязпая инвариантная относительно б окрестпость 8. Примем теперь, что 8 имеет границу, которую можно представить уравнением Р х, у) = 0. Если написать такое уравнение для семейства окрестностей Я = зависящих от параметра 7, то получится семейство уравнений Р х, у, 7) = 0. Если эти уравнения удастся разрешить относительно 7 и если уравнение (р х, у) = 7, кроме того, будет аналитическим по ж и у, то этим будет доказано существование сходящегося инвариантного степенного ряда, так как при отображении б каждая граница ср х, у) = 7 переходит в себя. Наконец, следовало бы установить аналитическими методами, что в общем случае сохраняющее объем преобразование б пе имеет сходящегося инварианта. Этим самым было бы доказано утверждение, что в общем случае устойчивости не будет. Попытки провести строгое доказательство этого утверждения представляются нам довольно безнадежными. Пока даже пе доказано, что границей 8 является кривая, Биркгоф, используя приемы доказательства своей теоремы о неподвижной точке, пытался показать, что 8 будет при достаточно малой окрестности Я звездообразной, если формальный степенной ряд и, входящий в нормальную форму (12), не сводится то.пько к свободному члену, и что тогда граница С области 8 может быть представлена в полярных координатах г, I с помощью схо-  [c.289]


Рассматривая, как и выше, любую систему с двуу1я степенями свободы, мы всегда будем получать подобное частотное уравнение, квадратичное относительно р , которое обычно будет иметь два различных действительных положительных корня. Для каждого из згнх двух корней получится определенное отношение амплитуд двух соответствующих координат. Эти отношения амплитуд определяют две нормальные формы свободных колебаний системы, подобные представленным на рис. 136. Сложение в надлежащих пропорциях этих нормальных форм представит общий случай свободных колебаний,  [c.189]

В работе изложен приближенный метод определения параметров свободных колебаний цилиндрических оболочек с вырезами, свободными либо подкрепленными шпангоутами и стрингерами. Исследование основано на методе Рэлея — Ритца, в котором при описании изогнутой поверхности оболочки в рядах для перемещений могут быть использованы различные аппроксимирующие функции. В настоящем исследовании для аппроксимации перемещений в осевом направлении используются балочные характеристические функции, а для аппроксимации перемещений в окружном направлении — тригонометрические функции. В результате проведенного исследования установлено, что вырезы в общем приводят к снижению собственных частот колебаний, и этот эффект в наибольшей степени прояв- ляется для основной частоты колебаний. Физически это означает, что вырез уменьшает эффективную жесткость оболочки в большей степени, чем это делает уменьшение эффективной массы. Формы колебаний оболочек с вырезами проявили Сильное взаимодействие с различными волновыми формами, отличающееся в сравнении со сплошной оболочкой. При этом авторы установили возможность существования пиков для амплитуд нормальных перемещений как вблизи, так и вдали от края выреза. Уменьшение низших частот колебаний (обусловленное наличием выреза) для подкрепленной оболочки было меньше, чем для неподкрепленной.  [c.238]

Все это выглядит несколько таинственно. Дело же заключается в том, что динамическая индивидуальность системы в значительной степени определяет ее поведение при возбуждении колебаний. Механические системы ведут себя так, как если бы они стремились непрерывно совершать свободные колебания по собственным формам с соответствующими собственными частотами. В нормальных условршх это невозможно из-за наличия трения, однако при действии некоторого возбуждения колебания будут поддерживаться. Как мы увидим, здесь имеются две возможности система может либо получать возбуждение извне, либо сама обеспечивать необходимое возбуя -дение за счет стремления совершать свободные колебания с собственной частотой.  [c.53]

Колебания судовых корпусов. — В качестве другого п мера приложения теории колебаний стержней переменного сечен рассмотрим задачу о колебаниях судового корпуса ). В дайн случае возмущающая сила обычно возникает от неуравновещеннос двигателя или действия гребного винта ), н если частота воз щаюшей силы совпадает с частотой одной из нормальных фо колебаний корпуса, то могут возникнуть больщие колебания. Ес принять корпус судна за балку переменного поперечного сечения свободными концами и использовать метод Ритца (см. 61), то уравнения (158) всегда можно с достаточной степенью точное определить частоты различных форм колебаний.  [c.380]


Смотреть страницы где упоминается термин Нормальна форма (две степени свободна : [c.279]    [c.324]    [c.266]    [c.192]   
Смотреть главы в:

Динамические системы  -> Нормальна форма (две степени свободна



ПОИСК



Нормальная форма

Свободные Формы



© 2025 Mash-xxl.info Реклама на сайте