Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изучение нестационарной теплопроводности

ИЗУЧЕНИЕ НЕСТАЦИОНАРНОЙ ТЕПЛОПРОВОДНОСТИ  [c.140]

Назначение работы. Изучение теории нестационарной теплопроводности, отдельных стадий этого процесса, закономерностей температурного поля, признаков регулярной стадии ознакомление с экспериментом. Перед проведением лабораторной работы необходимо изучить пп. 1.3.1, 1.3.3 Практикума.  [c.140]

Электрическая модель предназначена для изучения нестационарного теплового режима двухслойной стенкн с учетом температурной зависимости коэффициента теплопроводности, термодеструкции материала и его поверхностного уноса. На СЭМУ можно также изучать тепловой режим одно- и многослойной стенки.  [c.390]


С помощью нескольких версий программ, в которых реализованы приведенные ранее алгоритмы, решено большое число прикладных задач, в том числе расчет полей температур, напряжений и деформаций и повреждений в роторах и корпусных элементах турбин ТЭС и АЭС (см. гл. 2—4). Эти алгоритмы и программы используют также и для решения других важных прикладных задач, например, двумерных и трехмерных задач теплопроводности и упругости при изучении термонапряженного состояния главной запорной задвижки Dy = 500 мм энергоблоков с реакторами ВВЭР-440 двумерных и трехмерных задач нестационарной теплопроводности, упругости, механики разрушения при изучении проблемы водяной очистки поверхности нагрева мощных котлоагрегатов.  [c.59]

К настоящему времени создана теория и разработаны приближенные методы решения интегральных уравнений стационарного теплообмена излучением в системах серых тел с диффузно отражающими и изотропно излучающими поверхностями, разделенными диатермической средой. В частности, детально разработаны зональные методы решения интегральных уравнений теплообмена излучением. В последние годы проведены исследования стационарного теплообмена излучением с более полным учетом радиационных характеристик тел (индикатрисы отражения и испускания) и разделяющих их сред (поглощение и рассеяние излучения) в зависимости от спектрального состава излучения. Однако в этих работах для разделяющей среды используются приближения серого тела, лучистой теплопроводности или диффузионное приближение и не учитывается многократное рассеяние. Во многих случаях разделяющая среда считается изотермической. Проведенные исследования в области сложного теплообмена (теплообмен излучением и теплопроводностью) носят в основном теоретический характер они проводились в целях изучения фотонной теплопроводности или нестационарного лучистого нагрева (охлаждения) тел.  [c.8]

В 20-е годы развитие учения о теплообмене в СССР возглавил академик М. В. Кирпичев, школа которого заложила основы теории подобия и ее приложения к вопросам теплопередачи. Советскими учеными были разработаны оригинальные и эффективные способы расчета процесса теплопроводности с помощью теории регулярного режима и метода элементарных балансов были предложены расчет конвективного теплообмена по методу теплового пограничного слоя, расчеты теплопередачи при кипении жидкостей и конденсации паров, расчеты различных случаев теплопередачи и, в частности, теплоотдачи перегретого пара при высоких давлениях, расчеты взаимной облученности тел в задачах радиационного теплообмена. Были разработаны также оригинальные методы экспериментального изучения процессов теплоотдачи и теплопроводности различных жидкостей, газов и водяного пара, определены их коэффициенты теплопроводности при высоких давлениях и температурах, составлены таблицы водяного пара и других рабочих веществ и разработаны нормы теплового расчета паровых котлов. Были разработаны также вопросы нестационарной теплопроводности, исследованы явления теплопередачи в двигателях внутреннего сгорания и теплообмена при изменении агрегатного состояния теплоносителя.  [c.8]


Уравнение (22-10) называется дифференциальным уравнением теплопроводности, или уравнением Фурье, для трехмерного нестационарного температурного поля при отсутствии внутренних источников тепла. Оно является основным при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты теплопроводностью и устанавливает связь между временным и пространственным изменениями температуры в любой точке поля.  [c.354]

Теплопередача — обусловленная разностью температур передача теплоты от одного тела к другому или от одних частей тела к другим частям того же тела. Рассматривают теплопередачи кондуктивную (кондукцию, теплопроводность), конвективную (конвекцию), радиационную (теплопередачу излучением, лучистую теплопередачу). Действительные процессы теплопередачи обычно сложны, в них все виды теплопередачи сопутствуют друг другу расчёт таких сложных процессов упрощается путём изучения отдельных видов теплопередачи, абстрагируясь от других. Задачи теплопередачи могут охватывать области, где каждая точка характеризуется определённой температурой, остающейся неизменной во времени (стационарное температурное поле), и области, где каждая точка имеет температуру, меняющуюся по времени (нестационарное температурное поле) в первом случае—установившаяся (стационарная) теплопередача, во втором—неуста-новившаяся (нестационарная).  [c.482]

Из приведенной классификации следует, что волновое уравнение является гиперболическим, а уравнение Гельмгольца — эллипти-. ческим. Методы решения этих уравнения существенно различаются. Волновое уравнение чаще используется при изучении нестационарных процессов, например в сейсмологии (теоретическое описание методов см. в работе [102]) в акустике и гидроакустике в большинстве случаев рассматривается уравнение Гельмгольца. Параболическое уравнение (уравнение диффузии или теплопроводности) до последнего времени не применялось в акустике, однако с развитием приближенных способов расчета волновых полей был разработан так называемый метод параболического уравнения [11]. Описание его приведено в обзорной статье [57].  [c.8]

Дифференциальное уравнение теплопроводности. Для всестороннего изучения передачи теплоты в пространстве теплопроводностью и установления зависимости между временными п пространственными изменениями те.мпературы тела для трехмерного нестационарного те.миературного поля при отсутствии внутренних источников теплоты было выведено дифференциальное уравнение теплопроводности  [c.68]

Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]



Смотреть страницы где упоминается термин Изучение нестационарной теплопроводности : [c.6]    [c.354]    [c.11]    [c.265]   
Смотреть главы в:

Практикум по теплопередаче  -> Изучение нестационарной теплопроводности



ПОИСК



ИЗУЧЕНИЕ СИЛ

Нестационарная теплопроводность

Нестационарность



© 2025 Mash-xxl.info Реклама на сайте