Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопередача кондуктивная

Теплопередача — обусловленная разностью температур передача теплоты от одного тела к другому или от одних частей тела к другим частям того же тела. Рассматривают теплопередачи кондуктивную (кондукцию, теплопроводность), конвективную (конвекцию), радиационную (теплопередачу излучением, лучистую теплопередачу). Действительные процессы теплопередачи обычно сложны, в них все виды теплопередачи сопутствуют друг другу расчёт таких сложных процессов упрощается путём изучения отдельных видов теплопередачи, абстрагируясь от других. Задачи теплопередачи могут охватывать области, где каждая точка характеризуется определённой температурой, остающейся неизменной во времени (стационарное температурное поле), и области, где каждая точка имеет температуру, меняющуюся по времени (нестационарное температурное поле) в первом случае—установившаяся (стационарная) теплопередача, во втором—неуста-новившаяся (нестационарная).  [c.482]


Кондуктивная теплопередача (кондук-ция, теплопроводность). Теплопередача, осуществляемая путём передачи энергии элементарными частицами вещества (электронами, атомами, молекулами), представляет собою результат микропроцессов обмена энергии между элементарными частицами, вступающими в соприкосновение друг с другом. В наиболее чистом виде кондуктивная теплопередача происходит в твёрдых телах, в жидкостях и газах реже и только в тонких слоях.  [c.482]

Анализ выражения (1.67) показывает, что для газорегулируемых ТТ открытого типа основным ограничением по теплопередаче является теплообмен на внешней поверхности конденсатора (первое слагаемое), тогда как у закрытых систем максимальный тепловой поток определяется капиллярным ограничением и кризисом кипения. Второе слагаемое в этом выражении представляет собой аксиальный кондуктивный перенос по стенке и фитилю ТТ. Подробный анализ его влияния дан в работах [7, 11]. Третье слагаемое характеризует концентрационную диффузию молекул пара в области парогазового фронта, анализ которого дан в работе [8]. При определенном конструктивном оформлении влиянием второго и третьего членов на теплопередачу можно пренебречь.  [c.29]

Кондуктивный режим, т. е. режим, при котором доминирует теплопередача теплопроводностью, характерен для твердых тел, а также жидкостей и газов, практически находящихся в покое. Анализ кондуктивного режима внутреннего теплообмена можно существенно упростить и облегчить, если выяснить наиболее существенный для общей теории печей вопрос о том, какой теплообмен (внешний или внутренний) является лимитирующим.  [c.189]

Потери, обусловленные радиационным теплообменом, могут играть заметную роль лишь в горячем цилиндре. Поршень, движущийся в полости расширения, обычно делают полым, чтобы уменьшить его массу и снизить кондуктивные потери тепла. Рабочему телу позволяется втекать в горячую полую головку поршня (рис. 1.78), чтобы перепад давления на тонкой стенке поршня был возможно меньшим. Перенос тепла в головке поршня осуществляется посредством теплопроводности и излучения, п для ослабления второго механизма теплопередачи предусматривают два-три радиационных экрана. Можно провести лишь грубую оценку радиационных потерь тепла, поскольку степени черноты поверхностей, участвующих в радиационном теплообмене, известны недостаточно точно. Для изучения радиационного теплообмена можно рекомендовать монографию  [c.334]

Определение тепловых потерь при движении пара прежде всего связано с теплопередачей от пара в окружающую среду. Всегда стараются обеспечить за счет специальных теплоизоляционных конструкций предельно малые тепловые потери. Во всех случаях имеет место сложный вид теплообмена с различными механизмами передачи теплоты конвективный, кондуктивный и излучением. В зависимости от конкретных условий выявляются те или иные превалирующие виды передачи теплоты, учет которых обеспечивает технически грамотное определение потерь теплоты при движении пара в эксплуатационных условиях.  [c.103]


Рассмотрим теперь конвективную теплопередачу внутри ограниченного объема, имеющего форму параллелепипеда, одна грань которого имеет температуру а остальные грани — 1 , причем 1 > Коэффициент конвек-тивно-кондуктивной теплопередачи через такую прослойку, заполненную воздухом, может быть найден по формуле  [c.196]

Для плоской Прослойки =—, где Я — коэффициент теплопроводности, I — толщина прослойки. Отсюда получаем выражение для конвективно-кондуктивного коэффициента теплопередачи к в прослойке  [c.35]

КОНДУКТИВНАЯ ТЕПЛОПЕРЕДАЧА (КОНДУКЦИЯ, ТЕПЛОПРОВОДНОСТЬ)  [c.574]

Тепловой кондуктивный поток От в горных породах подчиняется общему уравнению теплопередачи — закону Фурье  [c.267]

При высоких температурах и наличии хотя бы небольшой разности температур стенки и (ближайшего к ней ряда частиц должна иметься и существенная радиационная составляющая теплоотдачи. Поэтому. при оценке механизма теплоотдачи в таких системах следует предпочесть термины кондуктивно-коивективный при низких температурах и сложный при высоких. Правда, автор [Л. 320], анализируя свои опытные данные по теплообмену гравитационного движущегося слоя со стенкой вертикальной трубы, утверждает, что установлено отсутствие заметного радиационного теплообмена как для плотного, так и для еплотного слоев при температурах до 900 С . Однако это правильно только для условий опытов [Л. 320], где было велико термическое сопротивление слоя. Поэтому не приходилось ожидать существенного усиления теплопередачи из-за лучистого обмена даже при весьма большом увеличении коэффициента теплоотдачи слоя лучистым потоком.  [c.116]

Наиболее часто виброкипящий слой сыпучего материала в газовой среде используют в таких процессах тепло- и массообмена, как охлаждение, на1рев и сушка. При этом высокий уровень теплопередачи достигается в случаях циркуляционного движения сыпучего материала в камере аппарата. Имеются вибрационные аппараты с кондуктивной, конвективной и радиационной передачей тепла.  [c.408]

Расчет длительнос/пи процесса сушки при кондуктивном энергоподводе. Теплота передается теплопроводностью через стенку полки и днище противня (рис. 5.4.2). Значительное термическое сопротивление создается зазорами, возникающими вследствие неплотного прилегания продукта к противню и противня к стенке полки. Общий коэффициент теплопередачи  [c.553]

Верщур и Гриблер [Л. 6] исследовали теплопроводность стеклянного волокна различной плотности. Опыты проводились при атмосферном давлении и в вакууме. Это позволило определить составляющие эффективной теплопроводности. Доля кондуктивной теплопередачи составила 1—8% общей, доля теплопередачи путем конвекции— около 12%, а доля передачи тепла излучением— от 2 до 10%. Остальное Вершур и Гриблер относят к теплопередаче молекулярной теплопроводностью через воздушную среду.  [c.9]

Теплоемкость 1.30 Теплоемкость молярная 1,32 Теплоем кость удельная 1.31 Теплоизоляция 1,39 Теплоноситель 3.10 Теплообмен 1.16 Теплообмен конвективный 1.19 Теплообмен кондуктивный 1.18 Т еплообмен лучистый 1,17 Теплоотдача 1.22 Теплопередача 1.23 Теплопроводность 1,27 1-18п  [c.70]

Для к пиллярно-пористых тел — оболочек различают истинную и эффективную теплопроводность. Эффективная включает собственно теплопр Йводность (кондуктивную), перенос теплоты газами в капиллярах оболочки и передачу теплоты излучением внутри оболочки от зерна к зерну, через поры или капилляры. В горячей оболочковой форме последний способ теплопередачи имеет доминирующее значение.  [c.204]

В фильтрационном потоке на кондуктивный перенос накладывается влняние гидродисперсии, которая проявляется, так же как и при массопереносе, увеличением расчетного значения коэффициента теплопередачи, принимающего в этом случае вид  [c.267]


Смотреть страницы где упоминается термин Теплопередача кондуктивная : [c.482]    [c.171]    [c.8]    [c.115]    [c.574]   
Технический справочник железнодорожника Том 1 (1951) -- [ c.574 ]



ПОИСК



Теплопередача



© 2025 Mash-xxl.info Реклама на сайте